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The Interneuron Class Struggle
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In this issue of Cell, Gouwens et al. establish the state of the art for defining inhibitory cell types in the mouse
neocortex. By combining morphological, electrophysiological, and transcriptomic features to classify inter-
neurons in themouse visual cortex, this work provides a roadmap for understanding the diversity of cell types
and their functional role in cortical computations.
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It has long been recognized that the brain

is made up of distinct cell types. Their

beauty was first put on display by the

work of Ramon y Cajal, who showed

that among cells of the cerebral cortex

there are a diverse array of ‘‘short axon

cells,’’ now known as cortical GABAergic

inhibitory neurons (INs), or interneurons

(Ramón y Cajal, 1899). Cortical interneu-

rons are often categorized by subtle dif-

ferences in gene expression, physiology,

morphology, and connectivity, among

other attributes, making their classifica-

tion extremely challenging. Thus, many

years after Ramon yCajal, we still struggle

to understand and categorize the diversity

of inhibitory neurons in the cortex; howev-

er, in this issue of Cell, Gouwens et al.

(2020) represents a major step forward

in this effort.

To understand the function of cortical

circuits, it is necessary to catalog their

cellular diversity. Examining strictly

defined cell types has yielded deepmech-

anistic understanding of systems such as

the C. elegans, crustacean stomatogas-

tric ganglion, and the vertebrate retina

(Zeng and Sanes, 2017). A major advan-

tage that these biological systems have

relative to the murine cortical system is a

broad consensus about the classification

of cell types, making it possible for re-

searchers to compare their independent

findings. Similarly, there has been a

long-standing effort to catalog murine

cortical neurons by using various cellular

features (Ascoli et al., 2008); however,

such efforts have not yet yielded a

consensus on the diversity and nomen-

clature of cortical INs. Over the last

decade, the advent of transgenic Cre-ex-

pressingmouse lines hasmade it possible

to target specific IN classes based on
their marker expression (e.g., somato-

statin, SST; parvalbumin, PV; vasoactive

intestinal peptide, VIP). This allowed re-

searchers to investigate the role of each

IN class in cortical function. Such tools

have been extremely useful; however,

because each one of the Cre lines encom-

passes a variety of IN types, it has been

difficult at times to achieve consensus

on the function of an IN class (Fishell

and Rudy, 2011). Recently, single-cell

RNA deep sequencing has provided a

major breakthrough in the quest for IN

types (Poulin et al., 2016; Tasic et al.,

2016). Transcriptomics has shown us

that INs group in clusters that constitute

cardinal IN classes that often correspond

with cell types previously defined by mo-

lecular markers and morphological or

physiological criteria (Fishell and Rudy,

2011). Furthermore, each one of those

IN clusters can be subdivided into IN sub-

types by using combinatorial gene

expression. Despite the major contribu-

tions of transcriptomics toward cellular

classification, this method alone has not

established absolute boundaries between

cell types and does not allow us to

establish equivalences between gene

expression and morphology or physi-

ology, making it often difficult tomap tran-

scriptomically defined cell types onto his-

torical research on distinct IN cell types.

The work by Gouwens et al. makes a

remarkable contribution toward cataloging

the variety of inhibitory cell types of the vi-

sual cortex and provides a ‘‘ground truth’’

of the transcriptomic cell types. We finally

have a solid framework for IN classification

for future studies. By using the Patch-seq

technique in a highly standardized setting,

the authors have created a database of

4,270 INs with information on the electrical
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properties and transcriptomics of these

cells, with 517 of these cells having

morphological data (Figure 1A). These

data allow for unprecedented global un-

derstanding of the landscape of inhibitory

cell types in the neocortex by using distinct

modalities never before combined at this

scale. With this data, the authors were

able to draw boundaries among IN types

by clustering sampled cells based on sim-

ilarities in gene expression, morphology,

and electrophysiology. Powerfully, they

were able to relate the Patch-seq data

back to previously defined transcriptomic

cell types (t-types) and to compare the

boundaries defining cell types across mo-

dalities. The result is a consensusmorpho-

electric-transcriptomic typing (met-type)

defining 13 met-types within the SST-

expressing cells, five met-types within

the PV-expressing cells, two within the

Lamp5 cells, three within the Sncg cells,

and five within the VIP cells.

This work also highlights and expands

upon the outstanding past research

defining IN types through electrophysio-

logical, morphological, and histological

properties. In contrast with the limitations

provided by using transcriptomics alone,

this work allows mapping of historical

data to a common naming scheme. The

authors point out several instances of pre-

viously defined cell types mapping to their

consensus met-type approach: e.g., the

so-called L1 canopy cells map to

Lamp5-MET-1 (Schuman et al., 2019);

the layer 2/3 and 5/6 fanning-out Marti-

notti cells map to the SST-MET-3 and 4,

respectively (Muñoz et al., 2017); and the

translaminar fast-spiking cells map to

Pvalb-MET-4 (Bortone et al., 2014; Fran-

dolig et al., 2019). They also reveal new

signatures of cortical inhibitory cell types
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Figure 1. Consensus Cell Type Definitions Combining Data Modalities with Future Directions
(A) Schematic of the standardized Patch-seq pipeline combining transcriptomic, morphological, and electrophysiological data to generate consensus cell types
definitions.
(B) Schematic highlighting the difficulties in dividing cell types that could exist in functional continua.
(C) Future directions suggesting that including developmental and detailed connectivity information will likely improve the multimodal cell type classification
schema.
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such as clear soma depth profiles and

axonal laminar innervation patterns. SST

MET-types, for instance, exhibit a cell-

type-specific preference for different

cortical layers. By connecting data across

modalities, the authors also observe a

greater diversity of inhibitory neuron types

than many previous studies. Mapping cell

types across modalities and achieving

consensus about IN types across labs is

critical in order to comprehend the

functional role of each IN type in cortical

computations; however, the success of

systematic annotation is still highly

dependent on the cell type in question.

For instance, it should be simple to map

cell types across labs that aremorpholog-
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ically and transcriptomically unique and

cluster tightly in these spaces (e.g., SST/

Chodl and Chandelier cells; Figure 1B).

Such a task might prove difficult for IN

classes that appear to exist on a ge-

netic/functional continuum in which the

functionally relevant boundaries are

more difficult to define (e.g., Lamp5-

MET-1 and VIP cells; Figure 1B).

The journey toward achieving a univer-

sal classification system for cortical INs

is still ongoing. Although the work by

Gouwens et al. considerably moves the

needle of cortical interneuron classifica-

tion, future work will likely benefit from

examining additional parameters such

as connectivity, gene expression during
development, and in vivo activity (Figure

1C). Given the systematic and multidi-

mensional approach toward classification

of cell types practiced at the Allen Institute

for Brain Science, we might have these

answers in the near future. New develop-

ments, like the details of cellular and

subcellular connectivity that electron

microscopy will bring to the cell type clas-

sification system, are especially exciting.

Finally, we would like to end with a reflec-

tion on what this work means for future

research in the IN field. It is clear now

that functionally relevant and distinct cell

types require multiple parameters to

define. However, it is still common

practice and will likely remain common
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practice to use single Cre lines to define a

cell type due to experimental limitations.

The work by Gouwens et al. shows the

need for care when interpreting data

acquired with these genetic methods

alone. Overall, this work is a great leap

forward in our ability to define functionally

relevant cell types in an accessible way,

guiding comparisons and reproducibility

in future work.
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In this issue of Cell, Liu et al. present FucoID, a glycosyltransferase-mediated tagging platform, to biochem-
ically label and capture antigen-specific T cells. With this technology, the authors isolate and characterize
tumor-specific CD8+ and CD4+ T cells in murine tumor models. FucoID shows promise as a tool to enhance
the understanding of anti-tumor immune responses.
Tumor-infiltrating CD8+ and CD4+ T cells

(TILs) play a fundamental role in the recog-

nition and elimination of cancer and/or in

the suppression of protective anti-tumor

immunity (Dunn et al., 2002). Integral to

their ability to elicit an immune response

is their recognition of short peptides pre-

sented on major histocompatibility (MHC)

molecules through their cell-surface T cell

receptor (TCR). Over the past decade, we

have begun to appreciate both the hetero-

geneity and antigen-specificities of T cell

responses in the tumor. Cell-surface

markers such as PD-1 and CD137 (4-

1BB), or peptide-MHC (pMHC) multimers
have been used to enrich tumor-reactive

T cells and enable subsequent phenotypic

and functional characterization (Gros et al.,

2014; Newell et al., 2013; Wolfl et al.,

2007). However, in addition to aberrantly

expressed self-proteins and mutation-

harboring neoantigens, activation markers

also often isolate virally reactive, bystander

CD8+ T cells (Scheper et al., 2019; Simoni

et al., 2018). Moreover, pMHC multimers

rely on our computational ability to provide

a pre-filtered set of candidate tumor anti-

gens for study, and, as such, in silico ap-

proaches still cannot accurately predict

stimulatory T cell epitopes. Thus, there is
a need in the field for a strategy to pull

out true tumor-reactive T cells (for both

CD8+ and CD4+ subsets) from bystander

cells that are unlikely to be beneficial for

anti-tumor immunity.

In this issue of Cell, Liu et al. (2020) pre-

sent FucoID—a glycosyltransferase-

mediated tagging platform that provides

an unbiased approach to study tumor-

specific CD8+ and CD4+ T cells. FucoID

relies on a chemoenzymatic labeling reac-

tion whereby H. pylori fucosyltransferase

(FT)-labeled dendritic cells (DC-FTs)

transfer functionalized GDP-fucose-biotin

(GDP-Fuc-Biotin) substrates onto
ovember 12, 2020 ª 2020 Elsevier Inc. 847
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