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Developmental diversification of cortical 
inhibitory interneurons
Christian Mayer1,2,3,4*, Christoph Hafemeister2*, Rachel C. Bandler1*, Robert Machold1, Renata Batista Brito1,5, Xavier Jaglin1,3, 
Kathryn Allaway1,3, Andrew Butler2,6, Gord Fishell1,3,4,7 & Rahul Satija2,6

Cortical inhibitory neurons are a diverse population that varies 
widely in morphology, connectivity and patterns of activity1. This 
group of neurons is developmentally derived from progenitors 
located in embryonic proliferative zones known as the medial, cau-
dal and lateral ganglionic eminences (MGE, CGE and LGE, respec-
tively)1. Although each eminence gives rise to non-overlapping 
types of interneurons, the genetic programs driving interneuron fate 
specification and maintenance are not well understood. Diversity 
is first apparent in the regional expression of a limited number of 
transcription factors within the ganglionic eminences2,3. For exam-
ple, the transcription factor Nkx2-1 is expressed throughout the 
entire MGE, but is not expressed in the CGE or LGE4, whereas the 
transcription factor Lhx8 is expressed only within a subdomain 
of the MGE2. However, how these early sources of heterogeneity  
generate the vast diversity of adult interneurons remains unclear, a 
question that is complicated by the fact that the ganglionic eminences 
also generate numerous subcortical projection neuron types such as 
the cholinergic cells of the basal ganglia5,6.

Here we combine multiple single-cell RNA sequencing (scRNA-seq) 
approaches with genetic fate-mapping techniques to explore the emer-
gence of cellular heterogeneity during early mouse development. 
Within mitotic progenitors, we found a highly conserved maturation 
trajectory, accompanied by eminence-specific transcription factor 
expression that seeds the emergence of later cell diversity. Alongside 
the exit from the cell cycle, we reconstructed bifurcations into three  
distinct precursor states, which were highly correlated across emi-
nences, and included a cortical interneuron ground state. Lastly, guided 
by the genetic diversity seen in mature populations, we connected the 
transcriptomic heterogeneity of adult interneurons with their embry-
onic precursors. Our integrated longitudinal analysis reveals the 
emergence of interneuron subtype identity during development, and 
identifies genetic regulators responsible for these fate decisions.

Transcriptional profiling of ganglionic eminence cells
We manually dissected ganglionic eminence cells from wild-type 
mouse embryos at embryonic day (E)13.5 (for the MGE) or E14.5 (for 
the CGE and LGE)—time points corresponding to peak neurogenesis 
in these structures7,8, which include both dividing mitotic progenitors 
as well as postmitotic precursor cells (Fig. 1a, Supplementary Table 1).  
After cell dissociation, we used droplet-based single-cell mRNA 
sequencing (Drop-seq)9 to sequence the transcriptomes of 5,622 single 
cells from the MGE, 7,401 from the CGE and 8,543 from the LGE, from 
replicate experiments, observing on average 1,626 unique molecular 
identifiers (UMIs) per cell. We performed latent variable regression to 
mitigate heterogeneity resulting from cell-cycle state10,11 (Extended 
Data Fig. 1)—preventing subsequent analysis from being dominated 
by mitotic phase-specific gene expression—and filtered out rare con-
taminating populations of excitatory neurons (Neurod6; 2.6% of cells) 
and endothelial cells (Igfbp7; 0.7% of cells) (Fig. 1b, c). The remaining 
96.7% of cells were neuronal progenitors and precursors derived from 
the ganglionic eminences (for example, Dlx1; Fig. 1b, c). Within this 
population, the expression of early, intermediate and late marker genes 
was strongly associated with the top diffusion map coordinates (DMC; 
Extended Data Fig. 1). To establish a quantitative temporal account of 
differentiation programs within each eminence, we fit a principal curve 
through the DMC, representing an ordered ‘maturation trajectory’ for 
single cells based on their expression profiles12 (Fig. 1d). We obtained 
very similar trajectories using approaches based on principal compo-
nent analysis or reverse graph embedding13 (Extended Data Fig. 1),  
and observed that the maturation trajectory recapitulated known 
dynamics associated with neuronal maturation (Fig. 1e) while also seg-
regating ganglionic eminence cells into mitotic and postmitotic phases 
(Fig. 1f, Extended Data Fig. 1). To independently confirm the associ-
ation of the maturation trajectory with real time, we used FlashTag 
technology14 to fluorescently label cells in the ventricular zone15 of the 
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ganglionic eminences, and performed scRNA-seq on cohorts of 3-, 6-, 
12- and 24-h-old neurons as they migrated away from the ventricle 
(Supplementary Table 1, Fig. 1g). As expected, neurons generated at 
these sequential time points were distributed progressively along the 
maturation trajectory timeline (Fig. 1h, Extended Data Fig. 1).

The MGE and CGE are known to produce non-overlapping types of 
cortical interneurons16. To identify regionally expressed transcription 
factors2,3,17, we performed a differential expression analysis and found 
a small number of genes for transcription factors that were enriched 
in mitotic progenitors within particular eminences (Fig. 2a, Extended 
Data Fig. 2, Supplementary Table 2), many of which (for example, 
Nr2f1, Nr2f2, Nkx2-1) have previously been characterized6. Next, we 
identified the sequential patterns of gene expression characterizing 
the initial stages of cell differentiation. The majority of dynamically 
expressed genes followed robust and highly reproducible sequential 
waves of gene expression in all three eminences (Fig. 2b, Extended Data 

Fig. 2d, Supplementary Table 3). In situ hybridization (ISH) confirmed 
that these waves describe the sequential expression of stem-cell (for 
example, Nes), proneural (for example, Ascl1) and neurogenic genes 
(for example, Dcx), approximately correlating with the spatiotempo-
ral progression from the ventricular zone to the mantle zone (Fig. 2c, 
Extended Data Fig. 3). Developmental progression and cell cycle were 
the primary sources of transcriptional variance in these progenitors 
(Supplementary Methods), with maturation proportionally explaining 
sixfold more variance compared to eminence-of-origin (Fig. 2d).

To detect the potential fate divergence of cells along the maturation 
trajectory, we bootstrapped the construction of a minimum spanning 
tree18 (Fig. 3a, Supplementary Methods), and summarized the com-
bined result using multidimensional scaling. We first observed evidence 
of clear fate bifurcations as cells become postmitotic, and precursors 
from all ganglionic eminences branched into distinct precursor states 
(Fig. 3b, Supplementary Methods). The sequencing of MGE progeni-
tors at substantially higher depth with plate-based scRNA-seq revealed 
no transcriptomic evidence of similar bifurcations within mitotic cells 
(Extended Data Fig. 4a–c; Supplementary Table 1). Moreover, when 
we performed the unsupervised branching analysis only in mitotic 
progenitors, we found no evidence for the specification of distinct 
interneuron fates. Instead, consistent with our previous analysis of the 
maturation trajectory, heterogeneity was driven primarily by matu-
ration state or cell cycle, which may reflect the existence of mitotic 
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Figure 1 | Transcriptional landscape of single cells in the ganglionic 
eminences. a, Schematic of experimental workflow. Axes: A, anterior; 
D, dorsal; L, lateral; M, medial; P, posterior; V, ventral. b, Visualization 
of Drop-seq data from ganglionic eminence cells using t-distributed 
stochastic neighbour embedding. c, Canonical marker expression 
in ganglionic eminence precursors, excitatory neurons and vascular 
endothelial cells; colours as in b. d, A principal curve was fitted to the 
dominant diffusion map coordinates to order cells along a maturation 
trajectory. e, Expression (molecules per cell) of canonical regulators, as 
a function of the position along the maturation trajectory. The curve 
reflects local averaging of single-cell expression. Locally averaged values 
were multiplied by five for visualization on the same scale as the molecule 
counts. f, Percentage of cycling cells as a function of the position along 
the maturation trajectory; the dotted blue line marks the inferred mitotic-
to-postmitotic transition. g, Coronal brain sections of the ganglionic 
eminences, as cells migrate away from the ventricular zone (the apical 
surface of the ventricular zone is at the top of the images). Images were 
taken 3, 6, 12 and 24 h after fluorescent labelling with FlashTag technology. 
Scale bar, 50 μ​m. h, Maturation score distributions of FlashTag labelled 
cells, separated by time point.
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Figure 2 | A common developmental program of gene expression 
functions in the mitotic progenitors of all three ganglionic eminences. 
a, Volcano plots depicting differential gene expression across eminences 
for early mitotic cells (maturation score <​ 0.3). Transcription factors 
are annotated. b, Gene-expression dynamics in mitotic cells, based on 
local averaging of single-cell data, plotted along maturation score for 840 
developmentally regulated genes that were conserved across eminences. 
c, ISH patterns of early, intermediate and late maturation-trajectory genes 
in the ganglionic eminences that are highly expressed within anatomical 
boundaries of the ventricular zone, subventricular zone and mantle zone, 
respectively. d, The variance explained individually by a set of annotated 
factors, relative to the variance explained by the first principal component. 
Calculated independently for maturation score (MS), cell cycle score 
(CCS), eminence of origin (Emin), UMIs per cell and reads per cell.
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progenitors undergoing direct and indirect neurogenesis within the 
ventricular and subventricular zones19 (Extended Data Fig. 4d–f). 
Nonetheless, we cannot fully exclude the possibility of earlier fate- 
determination in mitotic progenitors.

We assigned cells to branches by traversing the final minimum 
spanning tree and annotating major splits (Fig. 3b, c). Notably, even 
though branched trajectories for each eminence were calculated inde-
pendently, branch gene expression markers were highly correlated 
across eminences (Fig. 3d, e). This indicates that, although each gan-
glionic eminence generates different cell populations, upon becoming 
postmitotic, cells from all eminences pass through conserved precursor 
states. One group of highly correlated branches (precursor state 1) 
expressed known regulators of interneuron development (Arx, Maf; 
Fig. 3e, Supplementary Table 4), whereas a second group of branches 
(precursor state 2) expressed known projection neuron marker genes 
(Isl1, Ebf1; Fig. 3e, Supplementary Table 4). The third group of branches 
(precursor state 3) exhibited weaker correlation across eminences, with 
the transcription factor Lhx8 representing a marker gene for the MGE 

branch 3 (Fig. 3e). Genetic fate-mapping using Lhx8-cre suggested that 
neurons within this branch account for the majority, if not all, of the 
cholinergic projection (nucleus basalis, medial septum) and cholinergic 
interneuron (striatum) populations, as well as the majority of parvalbu-
min (Pvalb)-positive projection neurons in the globus pallidus5,6 (Fig. 
3f–h, Extended Data Fig. 4g).

Diversity emerges from a common precursor state
To confirm that cells passing through precursor state 1 give rise to 
cortical interneurons, we used genetic fate-mapping strategies to enrich 
for postmitotic cells derived from ganglionic eminences at E18.5 for  
scRNA-seq (Supplementary Methods, Extended Data Fig. 4). Using 
a correlation-based distance metric (Supplementary Methods) we 
found that, as expected20, more than 80% of Dlx6a-cre fate-mapped 
cortical cells at E18.5 were assigned to precursor state 1, on the basis of 
their expression of canonical regulators of interneuron development 
(Fig. 3i, Extended Data Fig. 5). The remaining Dlx6a-cre fate-mapped 
cortical population were assigned to precursor states 2 and 3 (Fig. 3i, 
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Figure 3 | Postmitotic cells from all eminences pass through distinct 
precursor states. a, Multidimensional scaling (MDS) based on the  
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three branches. c, Quantitative contributions of cells per branch plotted 
for each ganglionic eminence. d, Hierarchical clustering of branch gene 
expression correlation. Gene expression was averaged for cells from the 
same ganglionic eminence and branch. e, Heat map depicting the top 
transcriptomic markers for each branch. f, Co-localization of Ai9 from 
Lhx8-cre;Ai9 mice with, from left to right, choline acetyltransferase 
(ChAT) in the striatum, medial septum, and nucleus basalis, and Pvalb 
in the globus pallidus. Scale bars, 300 μ​m. g, Percentage of total ChAT+ 
cells labelled with tdTomato in Lhx8-cre;Ai9 mice. n =​ 15 brain sections 
(striatum), n =​ 4 (medial septum), n =​ 8 (nucleus basalis); 2 mice. h, The 
percentage of total Pvalb+ cells labelled with tdTomato in Lhx8-cre;Ai9 

mice. n =​ 10 brain sections (striatum), n =​ 5 (globus pallidus), n =​ 4 
(cortex), 2 mice. Error bars in g and h indicate standard deviation across 
all quantified sections. i, Mapping of E18.5 cortical (CX) and subcortical 
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gene expression correlations. j, Relative variance explained individually  
by annotated factors for postmitotic cells at E13.5 or E14.5 (branch,  
CCS, Emin, UMIs per cell and reads per cell) relative to the variance 
explained by the first principle component. Residual cell cycle variation is 
due to our conservative cutoff for the mitotic–postmitotic transition.  
k, Differential expression analysis between MGE and CGE postmitotic 
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populations at E18.5 (middle), which is not the case in E13.5 mitotic 
progenitors (right); differentially expressed genes are depicted in blue.
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Extended Data Fig. 5), probably including the Meis2-expressing CGE-
derived GABAergic population that has recently been described21 
(Extended Data Fig. 5). Comparison of the expression profiles of cor-
tical interneuron precursors (precursor state 1) from the MGE and 
CGE revealed differentially expressed genes, the expression patterns of 
which are largely maintained in the cortex at later time points (Fig. 3k). 
Consistently, branching trajectories represented the most important 
source of variation in these cells, with an increasing contribution attrib-
utable to eminence of origin compared to mitotic progenitors (Fig. 3j). 
Thus, our data reveal how postmitotic pan-eminence transcriptional 
programs (precursor states) emerge, and in parallel, eminence-specific 
transcriptional programs escalate.

We next asked when subtype-specific gene expression patterns first 
appear during interneuron development. In the adult mouse, using a 

publicly available dataset22 (© 2015 Allen Institute for Brain Science, 
Allen Cell Types Database, available from: http://celltypes.brain-map.
org/download) we identified 14 inhibitory interneuron subpopulations 
that encompass known anatomically and physiologically defined sub-
types23,24 (Fig. 4a, Supplementary Methods, Extended Data Fig. 6). 
These could be allocated into non-overlapping cardinal types of corti-
cal interneurons (Pvalb, Sst, Vip, Id2, Th, Nos1, Igfbp6). We reasoned 
that if we could identify heterogeneous gene modules in developing 
cells that were shared with adult interneurons, we could identify early  
patterns of specification in precursors. We therefore applied our 
recently developed tool for the pairwise integration of scRNA-seq 
datasets25,26 (Fig. 4b–d), which ‘aligns’ cell types across datasets based 
on conserved sources of variation as identified by canonical correlation 
analysis. This procedure therefore links the heterogeneity observed in 
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Figure 4 | Integrating developmental scRNA-seq datasets to link 
embryonic heterogeneity with adult interneuron subtypes. a, Graph-
based clustering of interneurons from the adult mouse visual cortex (data 
from ref. 22 and Allen Cell Types Database, http://celltypes.brain-map.org/
download (2015)). Cluster names denote cardinal classes associated with 
canonical markers (for example Pvalb or Sst), with additional enumerated 
subdivisions (for example, Vip-1 or Vip-2). b–d, Integration of P10 (b), 
E18.5 (c), E13.5 (d) precursors with P56 cortical interneurons based 
on shared sources of variation. Top, adult cells coloured by subtype and 
precursor cells in grey. Bottom, precursor cells coloured by adult cardinal 
types to which they are assigned; blue, Pvalb; orange, Sst; violet, Vip; green, 
Id2; shades of gray, Igfbp6, Th or Nos1. e, Differentially expressed genes 
between CGE- and MGE-derived subsets (left); these genes are conserved 
in both developmental and adult cells. Each conserved gene is placed 
on the respective heat map when it is first observed to be differentially 
expressed during development. The same analysis was performed for Pvalb 

and Sst subsets (middle), and Vip and Id2 subsets (right). f, Conditional 
deletion of Mef2c in inhibitory neurons using Dlx6a-cre;Mef2cloxP/loxPRCE. 
Immunostaining of P20–P22 somatosensory cortex using anti-GFP (green) 
and anti-Pvalb (red); counterstaining with 4,6-diamidino-2-phenylindole 
(DAPI) shows cortical layers. Scale bar, 200 μ​m. g, Density quantification 
of cortical-interneuron subtypes in the P21 somatosensory cortex using 
antibodies for Pvalb, Sst, Vip, Npy, and calretinin (CR). Error bars reflect 
s.e.m.; two-tailed unpaired t-test, *​*​P <​ 0.01; n =​ 3 brains each for cortical 
knockout and control. Error bars reflect s.e.m.; two-tailed unpaired t-test, 
*​*​P <​ 0.01; n =​ 3 brains each for cortical knockout and control. h, Scatter 
plot comparing average expression of GABAergic single nuclei from post-
mortem human neurons after segregation into Pvalb and Sst types. Each 
dot represents the expression of a human gene. Markers of embryonic 
cardinal types are shown in green or blue dots, with a subset of gene names 
annotated.
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adult cells with heterogeneity in their precursors. On the basis of this 
alignment, P10 cells exhibited strong evidence of transcriptomic sep-
aration beyond cardinal types (Fig. 4b), including clear segregation 
between Sst Martinotti and non-Martinotti (X94), Vip bipolar and 
multipolar, and Id2 neurogliaform and non-neurogliaform interneu-
ron subtypes (Fig. 4e, Extended Data Figs 7–9).

Embryonic stages also displayed strong evidence of interneuron 
specification. On examination of the earliest stages, we observed a 
separation of Pvalb- and Sst-precursor cells within the E13.5 post
mitotic populations (Fig. 4d), and identified transcriptomic markers 
that were conserved into adulthood (early marker genes for Pvalb 
neurons: Mef2c, Erbb4, Plcxd3; early marker genes for Sst neurons: 
Sst, Tspan7, Satb1; Fig. 4e, Extended Data Fig. 7). A minority of E13.5 
cells also mapped to Vip and Id2 subsets, but conserved transcriptomic 
markers did not reach statistical significance until E18.5 (E18.5 markers 
of Vip neurons: Vip, Synpr, Igf1; E18.5 markers of Id2 neurons: Reln, 
Mpped1, Id2). By E18.5, all cardinal types of interneurons could be 
identified, and additional subtypes appeared to be transcriptionally 
specified as well (Fig. 4e, Extended Data Fig. 9). Notably, segregation 
into subtypes became evident at different developmental stages. For 
example, the clear emergence of Sst, Vip and Id2 subtypes was apparent 
for a subset of cells at E18.5 (Extended Data Fig. 8), but we were unable 
to clearly subdivide Pvalb neurons by P10, in accordance with their late 
maturation27. The results of our integrated analyses were in agreement 
with independent unsupervised analysis of each developmental stage 
(Extended Data Fig. 8). Consistent with our earlier findings (Fig. 2), 
we did not observe common sources of variation shared between adult 
interneurons and mitotic progenitors.

In addition to observing the potential specification of embryonic  
precursors, our list of cardinal type and subtype markers that  
are conserved from the ganglionic eminences through adulthood 
suggests a set of genetic regulators that may have important roles in 
this process. For example, the gene encoding the transcription factor 
Mef2c was among those that discriminated early Pvalb-precursors 
from other MGE-derived interneuron types (Fig. 4e). Genome-wide 
association studies have linked mutations in this gene to Alzheimer’s 
disease, schizophrenia and other neurodevelopmental disorders28. 
Consistent with our predictions, conditional deletion of Mef2c in 
inhibitory neurons led to a specific loss of Pvalb-interneurons by P20 
in cortical layers 2–6 (Fig. 4f, g, Extended Data Fig. 10), indicating that 
Mef2c is essential for the generation of this population. Notably, when 
examining a published single-nucleus RNA-seq dataset of human post 
mortem tissue29, we found that a subset of embryonic cardinal type 
markers from our mouse dataset (including Mef2c) was also differen-
tially expressed in adult human interneurons (Fig. 4h). Therefore, the 
genes we identified as defining embryonic cardinal types are candi-
dates for the regulation of interneuron fate determination and main-
tenance across species.

Discussion
Our work reveals how subtype-specific heterogeneity progresses from 
the expression of cardinal genes in progenitors to the emergence of 
specific subtypes that populate the mature cortex. Postmitotic cells in 
the ganglionic eminences branch into distinct precursor states, rep-
resenting populations fated to give rise to interneurons or projection 
neurons. It seems probable that the superimposition of precursor-state 
genes and eminence-specific genes act coordinately to bestow the com-
mon and unique characteristics within particular GABAergic popula-
tions, respectively.

Consequently, precursor genes are likely to direct the developmental 
cascade and acquisition of general properties that are shared within 
a given type. This probably ensures, for instance, that interneurons 
migrate tangentially to the cortex or the hippocampus, whereas pro-
jection neurons remain positioned ventrally and form long-range 
projections. Supplementing these more general programs are the 
eminence-specific genes that, for example, may direct the axons of 

parvalbumin cortical interneurons to form perisomal baskets and 
the efferents of somatostatin cortical interneurons to reliably target 
dendrites. These distinct differentiation modules reflect the major 
cardinal types of cortical interneuron precursors.

The identification of early precursors offers insight into how specific 
cell types emerge and provides genetic access to immature cortical 
interneuron subtypes. To broaden the implications of these results, 
our findings indicate that components of the transcriptional networks 
underlying interneuron fate specification are conserved between mouse 
and human, including Mef2c and other genes associated with neuropsy-
chiatric disorders. This highlights the power of combining single-cell 
genomics with analytical tools to identify genes that have important 
functional roles in the establishment and maintenance of interneuron 
fates. Our findings mark an initial but important step towards the goal 
of ultimately linking specific genes to their aetiology in neurodevelop-
mental and neuropsychiatric disorders.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
Data reporting. No statistical methods were used to predetermine sample size. 
The experiments were not randomized and the investigators were not blinded to 
allocation during experiments and outcome assessment.
Animals. All mouse colonies were maintained in accordance with protocols 
approved by the Institutional Animal Care and Use Committee at the NYU School 
of Medicine. Mouse strains used are the following: wild-type Swiss Webster females 
(Taconic Biosciences), Dlx6a(Tg)-cre (ref. 30), Lhx6(BAC)-GFP (GENSAT), Lhx8-
cre/cerulean (Jax stock #023453), Rosa26LSL-tdTomato (Ai9) (ref. 31), Rosa26 (CAG)-
LSL-eGFP (RCEloxP) (Jax stock #32037) (ref. 32), Dlx5/6(Tg)-cre/eGFP (Jax stock 
#023724; for characterization information, see images at the Allen Institute for 
Brain Science website (http://connectivity.brain-map.org/transgenic/imageseries/
list/1.html?gene_term=​Dlx5-CreERT2)). and Mef2cfl/fl (ref. 33). Both male and 
female mice were used for all single-cell RNA sequencing experiments.
Wild-type Drop-seq experiments. Mouse embryos at 13.5 (MGE) and 14.5 (CGE 
and LGE) days’ gestation were isolated from 6–8-week-old wild-type Swiss Webster 
timed-pregnant dams ordered from Taconic Biosciences. Embryos were staged in 
days post coitus, with embryonic day (E) 0.5 defined as noon of the day a vaginal 
plug was detected after overnight mating. The method of euthanasia for pregnant 
dams was inhaled-isoflurane overdose, and death was confirmed with decapitation. 
Surgical access to the uterine horns enabled removal of embryos. After removal 
from the mother, embryos were stored on ice in Leibovitz’s L-15 medium and 
1% fetal bovine serum. Brains were removed from the embryos and embedded 
in 1% ultrapure low melting point agarose and sectioned in 50-μ​m sections with 
a vibratome (Leica VT1200S). The MGE, CGE or LGE were dissected from each 
embryo. MGEs were dissected from horizontal brain sections, whereas CGEs and 
LGEs were dissected from coronal brain sections. Tissue from several embryos was 
pooled together before dissociation.
Single-cell dissociation. Embryonic brain tissue pooled from several embryos 
was dissociated into a single-cell suspension using a papain dissociation system 
(Worthington Biochemical) according to the manufacturer’s instructions. Postnatal 
brain tissue was dissociated with 1 mg ml−1 of pronase (Roche, #10 165 921 001) 
in ice-cold prebubbled artificial cerebrospinal fluid for 25 min.
Fluorescence-activated cell sorting. Fluorescent cells from Dlx6a-cre;Ai9, Dlx6a-
cre;RCEloxP, Lhx6(BAC)-GFP and CellTrace injected (FlashTag) brain tissue were 
sorted on a Sony SY3200 sorter with a 100-μ​m nozzle. Cells were sorted in bulk for 
experiments using Drop-seq and the 10x Genomics platform, whereas for experi-
ments using plate based scRNA-seq methods, single cells were sorted into 96-well 
plates and immediately frozen on dry ice.
Single-cell RNA sequencing and library preparation. Drop-seq was run on single 
cells according to the Online Dropseq Protocol v.3.1 (December 2015) and the 
methods published in ref. 9. Drop-seq flow rates (oil: 6,000 μ​l h−1, cells: 2,000 μ​l h−1,  
beads: 2,000 μ​l h−1) were optimized based on human–mouse species mixing 
experiments with a 1–2% doublet rate. Libraries were prepared with the Nextera 
XT DNA Library Preparation Kit according to the manufacturer’s instructions. 
For experiments using the 10x Genomics platform, the Chromium Single Cell 
3′​ Library & Gel Bead Kit v2 (PN- 120237), Chromium Single Cell 3′​ Chip 
kit v2 (PN-120236) and Chromium i7 Multiplex Kit (PN-120262) were used 
according to the manufacturer’s instructions in the Chromium Single Cell  
3′​ Reagents Kits V2 User Guide.

For single cells sorted into 96-well plates, cells were immediately lysed and mRNAs 
were released when single cells were sorted into wells with 5× Maxima reverse tran-
scription buffer, dNTP mixture, RNase inhibitors (SUPERase In RNase Inhibitor, 
Thermo Fisher Scientific #AM2696) and water. We reverse-transcribed the mRNAs 
using Superscript II Reverse Transcriptase (Thermo Fisher Scientific #18064071), 
and amplified cDNAs for each cell in individual wells using the Smart-seq2 (ref. 34) 
protocol, with a custom modification in which a 12-base cell barcode was included 
in the 3′​-end reverse transcriptase primer. This enabled us to perform multiplexed 
pooling before library preparation with the Nextera XT DNA sample prep kit 
(Illumina), and returned 3′​ biased data similar to the Drop-seq protocol. We quantified 
the cDNA libraries on an Agilent BioAnalyzer and sequenced them on a HiSeq 2500.
FlashTag. Immediately before use, 10 mM CFSE (Life Technologies, #C34554) 
CellTrace solution was prepared according to the manufacturer’s instructions, and 
2–3 μ​l was injected into the lateral ventricle of E12.5 or E13.5 wild-type mouse 
embryos. Embryos were collected 3, 6, 12 and 24 h post-injection.
Fluorescent in situ hybridization. Fluorescent in situ hybridization (ISH) 
for nestin (Nes) and cyclin D2 (Ccnd2) transcripts (Fig. 2d) was performed 
as previously described35. Antisense cRNA probes were prepared by T7 
polymerase in vitro transcription of PCR product templates generated using 
the following primers: Nestin, 5′​-AGCAGTGCCTGGAAGTGGAAG-3′​ and  
5′​-GCACATTAATACGACTCACTATAGGGCTGGATCCCCTCAGCTTGG-3′​;  
Cyclin D2, 5′​-ACCTCCCGCAGTGTTCCTA-3′​ and 5′​-AATTAATACGACTC 
ACTATAGGCTGCTCTTGACGGAACTGCT-3′​

Immunohistochemistry. Lhx8 fate-mapping. To fate-map Lhx8-lineage neurons, 
Lhx8-cre/cerulean mice were crossed with Ai9 mice. Offspring with both alleles 
were then transcardially perfused with PBS followed by 4% paraformaldehyde 
(PFA) in PBS at postnatal day 21. The brains were collected, fixed overnight in 4% 
PFA at 4 °C, embedded in 4% agarose, and sectioned at 50 μ​m on a Leica VT1200S 
vibratome before proceeding with immunohistochemistry. Lhx8-cre/cerulean;Ai9 
brain sections were blocked for 1 h in 10% normal donkey serum, 0.3% Triton-X. 
Sections were incubated at 4 °C overnight in the following primary antibodies: goat 
anti-ChAT (1:250, Millipore AB144P), goat anti-Pvalb (1:1000, Swant PVG213), 
rabbit anti-SST (1:3000, Peninsula Labs T-4102), rabbit anti-GABA (1:2000, Sigma 
A2052), chicken anti-GFP (Aves Labs 1020), rabbit anti-DsRed (Clontech 632496). 
Following several washes in PBS, sections were incubated at room temperature for 
1 h in the following secondary antibodies: Alexa Fluor 488-donkey anti-chicken, 
Alexa Fluor 594-donkey anti-rabbit, and Alexa Fluor 647-donkey anti-goat and 
rabbit (all Jackson Immunoresearch). Sections were then washed again several 
times in PBS, treated with DAPI as a counterstain, and mounted on slides. Sections 
were imaged using a Zeiss Axioimager A2 and processed in ImageJ.
Mef2c conditional inactivation. We conditionally inactivated Mef2c by crossing 
the Mef2cfl/fl allele with either a Dlx6a-cre or Dlx5/6-cre driver line. As the recom-
bination mediated by these two driver lines is indistinguishable, they are used 
interchangeably in Fig. 4f, g, respectively. This results in the deletion of Mef2c in all 
cortical interneurons during embryogenesis, shortly after they become postmitotic. 
We took advantage of the RCEloxP reporter line, which upon Cre-mediated recom-
bination enables the expression of GFP.
Density of cortical-interneuron subtypes in Mef2c conditional mutants. Brains 
from Dlx5/6-cre;Mef2cloxP/loxPRCE mice were fixed by transcardial perfusion with 4% 
PFA in PBS followed by a 1-h post-fixation period on ice with 4% PFA/PBS solution. 
Brains were rinsed with PBS and cryoprotected using 15% sucrose/PBS solution 
for 6 h and 30% sucrose/PBS solution overnight at 4 °C. Tissues were embedded 
in Tissue-Tek, frozen on dry ice, and cryosectioned at thicknesses of 20 μ​m.  
Sections for immunohistochemistry analysis were processed using 1.5% normal 
goat serum and 0.1% Triton X-100 in all procedures except for washing steps, 
in which only PBS was used. Sections were blocked for 1 h, followed by incu-
bation with the primary antibodies overnight at 4 °C. Cryostat tissue sections 
were stained with the primary antibodies rat anti-SST (1:250, Chemicon), mouse 
anti-Pvalb (1:1,000, Sigma), and rabbit anti-VIP (1:250, ImmunoStar), rabbit 
anti-Neuropeptide Y (1:500; Incstar), mouse anti-Calretinin (1:1,500; Chemicon). 
Secondary antibodies conjugated with Alexa fluorescent dyes were applied for 
1 h at room temperature to visualize the signals. Nuclear counterstaining was 
performed with DAPI solution. All analysis was evaluated in the somatosensory 
cortex. Density quantification for cortical-interneuron subtypes was calculated as 
number of (peptide marker) +​ expressing cortical interneurons/area in the P21 
control and Mef2c cortical knockout somatosensory cortex. To minimize counting 
bias, we compared sections of equivalent bregma positions, defined according to 
the Mouse Brain Atlas36. The total number of cells expressing the marker were 
counted for a defined and normalized optical area. Three brains each were used 
for knockout and control.
Layer distribution of Pvalb-expressing cortical interneurons in Mef2c condi-
tional mutants. Tissue from conditional Mef2c mutants (Dlx6acre;Mef2cfl/fl) and 
controls (Dlx6acre;Mef2cfl/+) were analysed at P20–P21. Adult mice were transcar-
dially perfused with 4% PFA after being anaesthetized by intraperitoneal adminis-
tration of Sleepaway. Brains that were processed for immunofluorescence on slides 
were post fixed in 4% PFA in PBS at 4 °C and cryopreserved following the perfusion 
and brain collection. 16-μ​m coronal sections were obtained using Cryostat (Leica 
Biosystems) and collected on super-frost coated slides, then allowed to dry and 
stored at −​20 °C until use. For immunofluorescence, cryosections were thawed and 
allowed to dry for 5–10 min and rinsed twice in 1× PBS. They were incubated at 
room temperature in a blocking solution of PBST (PBS, 0.1% Triton X-100) and 
10% normal donkey serum (NDS) for 60 min, followed by incubation with primary 
antibodies in PBST and 1% NDS at 4 °C overnight. Primary antibodies are as  
follows: anti-GFP chicken polyclonal IgY (1:1,000) (Abcam Ab13970), anti-
parvalbumin (Pvalb) goat (Swant PVG 213) and anti-parvalbumin (Pvalb) rabbit 
(Swant PV25). Samples were then washed three times with PBST and incubated 
with fluorescence conjugated secondary Alexa antibodies (Life Technologies) in 
PBST with 1% NDS at room temperature for 60–90 min. Slides were then incubated 
for 30 s with DAPI, washed three times with PBST and once with PBS. Finally, slides 
were mounted with Fluoromount G (Southern Biotech) and imaged. To quantify 
the layer distribution and density of various populations of cortical interneurons, 
the proportion of interneurons of given subtypes over the total number of fate-
mapped interneurons across cortical layers was manually determined in ImageJ. 
Percentages presented in Fig. 4 were calculated by dividing the number of marker- 
positive neurons in each layer (for example, layer I, layer II/III, layer IV and layer V/VI)  
by the total number of reporter-positive neurons. Percentages were compared with 
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repeated t-tests in GraphPad Prism, and means ±​ s.d. are represented. Three brains 
each were used for knockout and control, 3–4 sections per brain. See Extended 
Data Fig. 10a.
Single-cell RNA-seq data processing. The raw Drop-seq data was processed with 
the standard pipeline (Drop-seq tools version 1.12 from McCarroll laboratory). 
Reads were aligned to the ENSEMBL release 84 Mus musculus genome. 10x 
Genomics data was processed using the same pipeline as for Drop-seq data, 
adjusting the barcode locations accordingly.
Data filtration. We selected cells for downstream processing in each Drop-seq 
run, using the quality control metrics output by the Drop-seq tools package9, as 
well as metrics derived from the UMI matrix. 1) We first removed cells with a low 
number (<​700) of unique detected genes. From the remaining cells, we filtered 
additional outliers. 2) We removed cells for which the overall alignment rate was 
less than the mean minus three standard deviations. 3) We removed cells for which 
the total number of reads (after log10 transformation) was not within three standard 
deviations of the mean. 4) We removed cells for which the total number of unique 
molecules (UMIs, after log10 transformation) was not within three standard devi-
ations of the mean. 5) We removed cells for which the transcriptomic alignment 
rate (defined by PCT_USABLE_BASES) was not within three standard deviations 
of the mean. 6) We removed cells that showed an unusually high or low number of 
UMIs given their number of reads by fitting a loess curve (span =​ 0.5, degree =​ 2) 
to the number of UMIs with number of reads as predictor (both after log10 trans-
formation). Cells with a residual more than three standard deviations away from 
the mean were removed. 7) With the same criteria, we removed cells that showed 
an unusually high or low number of genes given their number of UMIs. Of these 
filter steps, step 1 removed the majority of cells. Steps 2 to 7 removed only a small 
number of additional cells from each eminence (2% to 4%), and these cells did not 
exhibit unique or biologically informative patterns of gene expression.
Data normalization. The raw data per Drop-seq run is a UMI count matrix with 
genes as rows and cells as columns. The values represent the number of UMIs that 
were detected. The aim of normalization is to make these numbers comparable 
between cells by removing the effect of sequencing depth and biological sources of 
heterogeneity that may confound the signal of interest, in our case cell cycle stage.

A common approach to correct for sequencing depth is to create a new normali

zed expression matrix x with =
×( )x logi j

c
m,
10, 000i j

j

, , in which ci,j is the molecule  

count of gene i in cell j and mj is the sum of all molecule counts for cell j. This  
approach assumes that ci,j increases linearly with mj, which is true only when the 
set of genes detected in each cell is roughly the same. However, for Drop-seq, in 
which the number of UMIs is low per cell compared to the number of genes 
present, the set of genes detected per cell can be quite different. Hence, we 
normalize the expression of each gene separately by modelling the UMI counts as 
coming from a generalized linear model with negative binomial distribution, the 
mean of which can be dependent on technical factors related to sequencing depth. 
Specifically, for every gene we model the expected value of UMI counts as a func-
tion of the total number of reads assigned to that cell, and the number of UMIs per 
detected gene (sum of UMI divided by number of unique detected genes). To solve 
the regression problem, we use a generalized linear model (glm function of base 
R package) with a regularized overdispersion parameter theta. Regularizing theta 
helps us to avoid overfitting which could occur for genes whose variability is mostly 
driven by biological processes rather than sampling noise and dropout events. To 
learn a regularized theta for every gene, we perform the following procedure.

1) For every gene, obtain an empirical theta using the maximum likelihood 
model (theta.ml function of the MASS R package) and the estimated mean vector 
that is obtained by a generalized linear model with Poisson error distribution.

2) Fit a line (loess, span =​ 0.33, degree =​ 2) through the variance–mean 
UMI count relationship (both log10 transformed) and predict regularized theta 
using the fit. The relationship between variance and theta and mean is given by  
variance =​ mean +​ (mean2/theta).

Normalized expression is then defined as the Pearson residual of the regression 
model, which can be interpreted as the number of standard deviations by which 
an observed UMI count was higher or lower than its expected value. Unless stated 
otherwise, we clip expression to the range [−​30, 30] to prevent outliers from  
dominating downstream analyses.
Removal of cell cycle effect. The normalization method described above aims to 
reduce the effect of technical factors in scRNA-seq data (primarily, depth) from 
downstream analyses. However, heterogeneity in cell cycle stage, particularly among 
mitotic cells transitioning between S and G2/M phases, also can drive substantial 
transcriptomic variation that can mask biological signal. To mitigate this effect, we 
use a two-step approach: 1) quantify cell cycle stage for each cell using supervised 
analyses with known stage-specific markers, 2) regress the effect of cell cycle stage 
using the same negative binomial regression as outlined above. For the first step we 
use a previously published list of cell cycle dependent genes (43 S phase genes, 54 

G2/M phase genes) for an enrichment analysis similar to that proposed in ref. 11. 
For each cell, we compare the sum of phase-specific gene expression (log10 trans-
formed UMIs) to the distribution of 100 random background genes sets, where the 
number of background genes is identical to the phase gene set, and the background 
genes are drawn from the same expression bins. Expression bins are defined by 
50 non-overlapping windows of the same range based on log10(mean UMI). The 
phase-specific enrichment score is the expression z-score relative to the mean and 
standard deviation of the background gene sets. Our final ‘cell cycle score’ (Extended 
Data Fig. 1) is the difference between S-phase score and G2/M-phase score.

For a final normalized dataset with cell cycle effect removed, we perform  
negative binomial regression with technical factors and cell cycle score as 
predictors. Although the cell cycle activity was regressed out of the data for down-
stream analysis, we stored the computed cell cycle score before regression, enabling 
us to remember the mitotic phase of each individual cell. Notably, our regression 
strategy is tailored to mitigate the effect of transcriptional heterogeneity within 
mitotic cells in different phases, and should not affect global differences between 
mitotic and non-mitotic cells that may be biologically relevant.
Dimensionality reduction. Throughout the manuscript we use diffusion maps, 
a non-linear dimensionality reduction technique37. We calculate a cell-to-cell  
distance matrix using 1 −​ Pearson correlation and use the diffuse function of the 
diffusionMap R package with default parameters to obtain the first 50 DMCs. To 
determine the significant DMCs, we look at the reduction of eigenvalues associated 
with DMCs. We determine all dimensions with an eigenvalue of at least 4% relative 
to the sum of the first 50 eigenvalues as significant, and scale all dimensions to have 
mean 0 and standard deviation of 1.
Initial clustering of all cells. To identify contaminating cell populations and assess 
overall heterogeneity in the data, we clustered all single cells. We first combined all 
Drop-seq samples and normalized the data (21,566 cells, 10,791 protein-coding 
genes detected in at least 3 cells and mean UMI at least 0.005) using regularized 
negative binomial regression as outlined above (correcting for sequencing depth 
related factors and cell cycle). We identified 731 highly variable genes; that is, genes 
for which the z-scored standard deviation was at least 1. We used the variable genes 
to perform dimensionality reduction using diffusion maps as outlined above (with 
relative eigenvalue cutoff of 2%), which returned 10 significant dimensions. For 
clustering we used a modularity optimization algorithm that finds community 
structure in the data with Jaccard similarities (neighbourhood size 9, Euclidean 
distance in diffusion map coordinates) as edge weights between cells38. With the 
goal of overclustering the data to identify rare populations, the small neighbour-
hood size resulted in 15 clusters, of which two were clearly separated from the rest 
and expressed marker genes expected from contaminating cells (Neurod6 from 
excitatory neurons, Igfbp7 from epithelial cells). These cells represent rare cellular 
contaminants in the original sample (2.6% and 1%), and were excluded from  
further analysis, leaving 20,788 cells.
Identifying a maturation trajectory. To assign each cell a maturation score that 
is proportional to the developmental progress, we first performed dimensionality 
reduction as described above using all genes that were detected in at least 2% of 
the cells (8,014 genes). This resulted in four significant dimensions. We then fit 
a principal curve (R package princurve, smoother =​ ‘lowess’, f =​ 1/3) through the 
data. The maturation score of a cell is then the arc-length from the beginning of the 
curve to the point at which the cell projects onto the curve. The resulting curve is 
directionless, so we assign the ‘beginning’ of the curve so that the expression of Nes 
is negatively correlated with maturation. Nes is a known ventricular zone marker 
and therefore should only be highly expressed early in the trajectory. Maturation 
scores are normalized to the interval [0, 1]. In an independent analysis, we also used 
Monocle2 to order cells along a pseudo-time. We used Monocle version 2.3.6 with 
expression response variable set to negative binomial. We estimated size factors 
and dispersion using the default functions. For ordering cells, we reduced the 
set of genes based on results of the monocle dispersion Table function, and only 
considered 718 genes with mean expression ≥​ 0.01 and an empirical dispersion at 
least twice as large as the fitted dispersion. Dimensionality reduction was carried 
out using the default method (DDRTree).
Defining mitotic and post mitotic populations. We observed a sharp transition 
point along the maturation trajectory at which cells uniformly transitioned into 
a postmitotic state, corresponding to the loss of proliferation potential and exit 
from the cell cycle (Fig. 1f, Extended Data Fig. 1). We therefore subdivided the 
maturation trajectory into a mitotic and postmitotic phase to facilitate downstream 
analyses. We defined cells with a high phase-specific enrichment score (score  
>​2, see section ‘Removal of cell cycle effect’) as being in the S or the G2/M phase. 
We then fitted a smooth curve (loess, span =​ 0.33, degree =​ 2) to number of cells in 
S, G2/M phases as a function of maturation score. The point where this curve falls 
below half the global average marks the dividing threshold (Fig. 1f).
Smoothed expression for visualization. Although all statistical analyses (differential 
expression, branch detection, etc.) were performed on single-cell data (UMI counts or 
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normalized expression), we created smoothed expression estimates for visualization 
in Fig. 2b, c, and generated these by first fitting a loess curve (span =​ 0.5, degree =​ 2) 
to the normalized expression of each gene with maturation score as predictor. We 
then predicted values at 100 points at regular intervals from 0 to 1.
Identifying developmentally regulated genes. To identify genes that are develop-
mentally regulated during the mitotic phase, we used mutual information between 
expression and maturation score.

We selected all cells that we determined to be mitotic (as defined above, Fig. 1f, 
Extended Data Fig. 1) but ignored the 1% of cells with the lowest maturation score 
to be more robust against outliers. We discretized maturation scores by placing 
each cell into one of 13 equal sized bins, and did the same for the expression of 
each gene. We then calculated mutual information between each gene and the 
maturation score. We also calculated a random background mutual information 
(rbMI) distribution for each gene using shuffled maturation scores. These rbMI 
values allowed us to z-score the mutual information values by subtracting the mean 
of rbMI and then dividing by the standard deviation of rbMI. We determined 1,294 
genes to be highly developmentally regulated (z-score >​ 20).

We call 840 of these genes highly conserved, because all eminence-specific 
expression fits have a Pearson correlation >​0.9 with the fitted values obtained 
using the combined data (Fig. 2b).
Differential expression. We wanted to identify genes that were differentially 
expressed in the early mitotic cells between the eminences (Fig. 2a, Supplementary 
Table 3), and also between cells assigned to different branches (Fig. 3e, 
Supplementary Table 4). As has previously been observed39, expression values in 
scRNA-seq are overdispersed, and we model expression values as drawn from a 
negative binomial distribution. Concordant with our model for data normalization, 
our test is based on the same negative binomial regression model with regularized 
overdispersion parameter. For a gene i and its vector of UMI counts ci and a group 
indicator variable g, we fit the two models:

α β β β ε = + + + +cE r m cModel 1 : log( ( ))i 1 2 3

α β β β β ε = + + + + +cE r m c gModel 2 : log( ( ))i 1 2 3 4

with the technical factors r, the total number of reads per cell, and m, the average 
number of molecules per gene per cell, and the biological factor c, the cell cycle 
score. The overdispersion parameter theta is determined using model 1 and used 
for both models. The comparison of the two models using a likelihood ratio test 
determines the P value of model 2 providing a better fit. The log-fold change is 
directly given by the coefficient of the group indicator variable as βelog ( )2

4 . We 
called genes differentially expressed if the adjusted P value (false discovery rate, 
FDR) is smaller than 10−4 and the absolute fold change is larger than 1.
Branch analysis. To check for emerging heterogeneity in the cells, we focused 
on the postmitotic cells and performed a trajectory analysis that allows for 
branching, that is, one population of cells may give rise to multiple precursors. 
Minimum spanning trees (MSTs) have been used previously to identify putative 
branching structures in developing populations18,40. However, spurious edges in 
the MST or similar graph structures, previously referred to as short circuits, can 
introduce stochasticity into these analyses. To overcome this problem, we applied 
a bootstrapped approach using an ensemble of graphs, an approach inspired by 
the Wanderlust algorithm41, which also constructs an ensemble of graphs to gain 
robustness to short circuits. We repeatedly constructed MSTs based on subsam-
ples of the data, and combined their results to obtain a new cell-to-cell distance 
matrix and final tree structure that connects all cells. Branches are determined by 
traversing the final tree and identifying major splits.

We performed this analysis separately for each eminence, and input were 
the expression data of cells that we considered postmitotic based on maturation 
score and cell cycle score (1,992 CGE cells, 1,750 LGE cells, 1,271 MGE cells). For  
the analysis, we normalized the expression data as described above, regressing out 
the following factors: number of reads, molecules per gene, sample and cell cycle 
score. We considered all genes that were detected in at least 2% of the cells and that 
were highly variable, that is, had a z-scored standard deviation larger than 1 (997 
genes in CGE, 954 in LGE, 1,017 in MGE). We carried out dimensionality reduc-
tion as outlined above. We performed multiple runs of constructing an MST using a 
random set of 66% of all cells each time. The process was repeated until each pair of 
cells has been sampled at least 30 times (number of bootstraps for CGE, LGE, MGE: 
91, 89, 89). We combined the MSTs by averaging the cell-to-cell distances along the 
tree structures, followed by MDS to two dimensions. In theory, the MDS was not 
necessary, but in practice we observed a more robust final consensus MST on the 
MDS coordinates than on the averaged cell-to-cell distances. The consensus MST 
is given directionality by choosing a cell with a low maturation score as the root. 
Instead of using the cell with the lowest maturation score, an approach that can 

be sensitive to outliers, we chose the cell that maximizes the correlation between 
maturation score and distance from the root for all cells.

To determine significant branches, we traversed the tree starting from the root. 
Any cell that has outgoing edges to two or more cells is a potential branch point. 
However, we considered branches significant only when the number of cells in 
the branch was at least 8% of all cells in the MST. We marked only cells that are 
connected to two or more significant branches as branch points. Only terminal 
branches, that is, tree segments not containing branch points, are considered for 
further analysis.
Mapping E14.5 fate-mapped 10× scRNA-seq data to branches. Lhx6-GFP mice 
were crossed with wild-type Swiss Webster females. At E14.5, the MGE and CGE 
were each dissected from transgenic embryos and dissociated into a single-cell 
suspension. FACS sorting was used to collect GFP-positive cells from the MGE 
and GFP-negative cells from the CGE. Single-cell libraries were prepared using the 
10x Genomics pipeline. A total of 12,513 cells passed our initial filtering (5,998 
Lhx6-negative and 6,515 Lhx6-positive cells).

Since Lhx6 is expressed in postmitotic precursors, the Lhx6-positive sample 
from the MGE dissection should contain only postmitotic MGE precursors. 
However, the Lhx6-negative sample derived from the CGE will contain both 
mitotic progenitors and postmitotic precursors, as well as a minority of cells 
expressing Lhx6 mRNA, probably owing to errors during FACS sorting or a time 
delay in GFP translation. To remove mitotic progenitors from the Lhx6-negative 
CGE dataset, we performed a maturation trajectory analysis as outlined above, 
and kept only postmitotic cells (2,905 cells, Extended Data Fig. 4h–j). To conserv-
atively remove potential MGE cells from the same dataset, we clustered the data 
(as described in ‘Initial clustering of all cells’) and removed all cells belonging to 
clusters with an Lhx6 detection rate of more than 20%. This step removed 465 cells, 
leaving 2,440 Lhx6-negative postmitotic cells (Extended Data Fig. 4k).

To determine the branch identity of these cells, we mapped them to the E13.5 
Drop-seq branches using a correlation-based approach. We focused on 279 genes 
that were differentially expressed in one branch compared to the other two. For 
these genes, we averaged the normalized expression in all branches (three branches 
in each eminence) to create branch model vectors. We then calculated Pearson 
correlations between all individual cells that we wanted to map and the model 
vectors (CGE model vectors for the Lhx6-negative sample, MGE model vectors 
for the Lhx6-positive sample). We assigned each cell to the branch with the highest 
correlation, but also calculated empirical P values to determine the significance of 
the assignment by permuting the single-cell data for a random background. We 
left the model vectors unchanged, but permuted the single-cell expression data 
100 times. For each permutation and each cell we kept track of the largest Pearson 
correlation to the model vectors, and calculated a P value for the branch assignment 
by counting what fraction of correlation scores was larger than the one used for the 
branch assignment. In a final step, we turned all P values into FDRs and mapped 
only cells with an FDR <​0.1 to the branches (Extended Data Fig. 4l–n).
Mapping E18.5 cortex and subcortex cells to branches. To fate-map Dlx6a-
lineage neurons, Dlx6a-cre mice were crossed with either Ai9 or RCEloxP mice. 
Cortical and subcortical brain regions were dissected and collected from transgenic 
embryos at E18.5 and postnatal day (P) 10, dissociated into a single-cell suspension, 
and cells were collected with FACS based on their fluorescence expression. Single-
cell libraries were prepared using the 10x Genomics pipeline. To identify the poten-
tial branch of origin of E18.5 cortical (8,382 cells) and subcortical (8,237) neurons, 
we mapped the cells of the E18.5 samples to the branches using the same approach 
as for the E13.5 cells. We identified 774 differentially expressed genes between the 
branches in the E13.5 10x data and used the average across cells as branch model 
vectors (separately for CGE and MGE derived cells). We then used the same proce-
dure as for the E13.5 cells to map to the branches, allowing each E18.5 cell to map 
to any of the six E13.5 branches (3 CGE branches, 3 MGE branches), and applying 
the 0.1 FDR cutoff. Detailed results are shown in Extended Data Fig. 5 and Fig. 3i.
Relative variance explained. To quantify the contribution of different factors 
to the overall heterogeneity in our data, we compared the amount of variance 
of individual factors to the variance explained by the first principal component. 
Given an expression matrix (normalized using negative binomial regression as 
described above, regressing out number of reads and average number of molecules 
per detected gene), we first selected the most variable genes (z-scored standard 
deviation >​1). To quantify the variance associated with an annotated factor of 
interest, we first constructed a vector representing the annotation of each cell. 
For a continuous factor of interest (for example, cell cycle score), we centred the 
vector and length-normalized it to length 1. We then projected the expression data 
onto this vector, and calculated the variance of the projected dataset. For a discrete 
factor (for example, branch), we first turned the vector into a set of indicator varia-
bles, and applied principal component analysis to obtain independent continuous 
vectors. We then projected the dataset onto each of these vectors, calculated the 
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variance of the projected dataset and took the sum over all vectors. This enabled 
us to compare the variance explained between different annotated factors (for 
example, cell cycle and maturation score). For visualization and interpretation in 
Figs. 2e and 3k, we normalized these values by the variance explained by the first 
principal component of the dataset.
Smart-seq2 data processing. Reads were aligned using the same pipeline as for 
the Drop-seq data. We kept only cells with at least 2,000 unique genes detected. 
We further removed cells with a z-scored alignment rate <​−​3, or with an absolute 
z-scored number of reads (after log10 tranformation) >​3. This resulted in 1,099 
cells in the Flashtag experiments, and 400 cells in the Dlx6a-negative experiments.

Expression data were normalized to x with = +
×( )x log 1i j

c
m, 10

1, 000i j

j

, , in which 

ci,j is the read count of gene i in cell j and mj is the sum of all mapped reads for cell 
j. Cell cycle score was calculated as described above, and regressed out using a 
linear model including an intercept term. We used the residuals for all further 
analyses. For dimensionality reduction we used diffusion maps on all genes that 
were detected in at least 5% of the cells (approximately 10,000 genes). All further 
analysis was carried out as for the Drop-seq data.
Integration of developmental and adult datasets. We used genetic fate-mapping 
strategies in combination with the 10x Genomics Chromium system for scRNA-seq 
to study cortical interneuron development at embryonic (E13.5, E18.5), postnatal 
(P10) and adult (P56) stages. Specifically, we used the Lhx6-GFP transgenic mouse 
line to select for postmitotic MGE cells and to precisely discriminate MGE versus 
CGE precursor cells at E14.5 (Extended Data Fig. 4). For later stages, in which 
cells have migrated out of the ganglionic eminences, we used a Dlx6a-cre; RCEloxP 
pan-ganglionic-eminence fate-mapping strategy to collect cortical interneurons at 
E18.5 and P10 (Extended Data Fig. 5) and used the publicly available Allen Brain 
Institute scRNA-seq dataset22 (Allen Cell Types Database; http://celltypes.brain-
map.org/rnaseq) for the adult time point.

We applied our recently developed integration tool for scRNA-seq datasets25, to 
identify shared sources of variation between embryonic (E13.5, E18.5), postnatal 
(P10) and adult (P56) datasets.

For the P56 dataset, we downloaded FPKM expression values for 8,432 single 
cells from the mouse visual cortex, sequenced with the Smart-Seq2 protocol, from 
a publicly available resource at the Allen Brain Atlas (Allen Cell Types Database; 
http://celltypes.brain-map.org/rnaseq). We selected 3,432 GABAergic cells for 
downstream analysis based on an initial clustering analysis and a selection of Gad1-
positive clusters (Extended Data Fig. 6). For E18.5 and P10 datasets, we performed 
a similar initial clustering, removing populations of microglia, astrocytes, oligo-
dendrocytes and smooth muscle cells that probably represent FACS false-positives 
and are unlikely to give rise to cortical interneurons (Extended Data Fig. 5). For 
the E13.5 and E14.5 dataset, we took all cells from our Lhx6-positive and Lhx6-
negative datasets that were assigned to the interneuron precursor state (branch 1).

We performed three separate pairwise analyses, aligning E13.5 and P56, E18.5 
and P56, and P10 and P56 datasets. In each case, we applied the Seurat alignment 
procedure as previously described25. We first detected variable genes in each dataset 
independently, using the FindVariableGenes function with default parameters. We 
used the union of the two variable gene sets used as input to canonical correlation 
analysis, and aligned the resulting canonical correlation vectors (CCV) across 
datasets with the AlignSubspace function. In brief, AlignSubspace constructs 
‘metagenes’ representing the average expression of genes exhibiting robust cor-
relations to the CCV in both datasets, and applies nonlinear ‘warping’ algorithms 
to align these metagenes between datasets. We performed this analysis for each 
of the top 15 CCV independently, and used biweight midcorrelation (bicor), a 
median-based similarity metric implemented in the WGCNA R package42. For 
downstream analysis (t-distributed stochastic neighbour embedding (t-SNE) 
and subtype mapping), we selected CCV for which at least 30 genes exhibited a 
minimum bicor of 0.15 in both datasets, applying the same cutoff across all three 
analyses.

For visualization (Fig. 4b), we constructed a distance matrix from these selected 
components as input to tSNE with default parameters. We next assigned cells 
from developmental datasets to adult subtypes, performing the following analysis 

separately for each of the three pairwise comparisons. For each cell in the develop-
mental dataset, we calculated the k =​ 10 closet neighbours in the P56 dataset, using 
the selected CCV for the input distance matrix. If at least 9 of these neighbours in 
the P56 dataset were of the same subtype, the developmental cell was assigned to 
this subtype. We note that this represents a stringent threshold, which we apply 
equally across all comparisons. As a secondary check, for each developmental 
cell, we calculated the nearest k =​ 10 neighbours across all cells in the merged 
developmental and adult dataset. If none of these 10 neighbours represented cells 
in the P56 dataset, we also considered the cell to be unassigned. We performed 
this mapping procedure twice, to assign cells to the four main cardinal types  
(Fig. 4b–d), and also to assign them to the 14 finer subtypes (Extended Data Fig. 9)

To identify differentially expressed genes that were conserved across 
development, we used the FindConservedMarkers command in Seurat, which runs 
differential expression tests separately on both developmental and adult datasets. 
We required genes to have a 1.25-fold change, with a Bonferroni-corrected P value 
threshold of 0.05 in both developmental and adult datasets to be considered a 
conserved marker. Figure 4e and Extended Data Fig. 7 lists these genes, in order 
of when they first become annotated as differentially expressed.

Lastly, we explored whether our early transcriptomic markers of cardinal type 
separation in the mouse were also differentially expressed in human adult neurons. 
We used data from a recently published dataset of 14,963 single human nuclei from 
post-mortem tissue28. We performed standard log-normalization in Seurat, and 
calculated the average expression level of nuclei that were annotated as belonging 
to Pvalb, Sst, Id2, and Vip types. We used these values for the scatter plots in 
Extended Data Fig. 10.
Code availability. Code for preprocessing and analysis of scRNA-seq data are 
available from the Center for Open Science at https://osf.io/xjmtr. The Seurat 
package, which was used for the integration of developmental datasets, is open-
source and freely available on GitHub (https://github.com/satijalab/seurat) and 
CRAN (https://cran.r-project.org/web/packages/Seurat/index.html).
Data availability. All source data, including sequencing reads and single-cell 
expression matrices, are available from the Gene Expression Omnibus (GEO) 
under accession code GSE104158.
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Extended Data Figure 1 | Ordering cells along a maturation trajectory. 
a, Diffusion map analysis of eminence datasets suggests a pan-eminence 
developmental continuum. Each eminence was analysed independently, 
revealing nearly identical patterns. Cells are coloured according to the 
expression of canonical regulators. b, Using principal component analysis 
to reconstruct developmental maturation returns nearly identical results 
to the diffusion map analysis in Fig. 1. Principal component analysis was 
calculated for all eminences independently, and cells are coloured by their 
expression of canonical markers. c, Eigenvalues for the two dimensionality 
reduction methods. We observe a substantial eigenvalue drop-off after 
the initial components, demonstrating that the majority of the variance 
is captured in the first few dimensions. d, Single-cell heat map showing 
scaled expression levels of top genes that were correlated with cell cycle 
score. Cells on the x axis are sorted by cell cycle score. Negative scores 
correspond to cells in S phase, positive scores correspond to cells in G2/M 
phase. e, Scatter plot illustrating the relationship between maturation 
score and cell cycle score for all cells in the dataset. Each dot corresponds 

to a single cell. Early progenitors span a wide range of cell cycle states, 
whereas late cells do not express G2/M or S-phase specific genes and 
express postmitotic genes. f, Expression of canonical marker genes as 
a function of ‘pseudotime’, as calculated with Monocle213. Monocle2 
pseudotime was strongly correlated with our maturation trajectory (both 
Pearson and Spearman R =​ 0.94). g, h, Diffusion map (g) and maturation 
trajectory (h) analysis of 1,099 single cells obtained from FlashTag 
animals, and sequenced using a custom version of the Smart-seq2 protocol 
(Supplementary Methods). Cells are coloured by their expression of 
canonical markers, which exhibit dynamics that are concurrent with the 
maturation trajectory learned from the Drop-seq data. i, j, Relationship 
between the maturation trajectory and cell cycle scores derived from the 
FlashTag datasets replicates our observations from Drop-seq. Therefore, 
our FlashTag maturation trajectory serves as complementary validation of 
our Drop-seq maturation trajectory, and exhibits strong association with 
biological time.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 2 | Enrichment of differentially expressed genes 
in the MGE, CGE and LGE. a, Schematic of embryonic brain sections at 
E13.5/E14.5. One sagittal section shows the MGE and LGE next to one 
another (right), whereas the other shows the CGE (left). b, ISH images 
from the Allen Brain Institute Developing Mouse Brain Atlas at E13.5 
for genes that our analysis identified as being differentially expressed 
between the eminences. For each gene, ISH images are shown for the 
MGE, CGE and LGE. Image credit: Allen Institute. c, Temporal dynamics 

for differentially expressed genes in early mitotic cells. Curves represent 
local averaging of single-cell expression, as a function of progression 
along the maturation trajectory, for each eminence independently. Grey 
area indicates 95% confidence interval. Genes are selected from the 
differentially expressed genes in early mitotic cells (Fig. 2a). d, Gene 
expression dynamics in mitotic cells, based on local averaging of single-
cell data, plotted along maturation score for selected developmentally 
regulated genes.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 3 | Enrichment of dynamically expressed genes  
in the ventricular zone, subventricular zone and mantle zone.  
a, Schematic of an embryonic brain section at E13.5/E14.5. The locations 
of the ventricular zone (VZ) and mantle zone (MZ) are indicated.  
b, Sagittal ISH images from the Allen Brain Institute Developing Mouse 
Brain Atlas at E13.5. Genes are ordered from lowest to highest maturation 

score rank. The trend overall shows that genes with peak expression at low 
maturation score tend to have higher expression in the ventricular zone, 
and as maturation score rank increases the expression pattern shifts to 
the subventricular zone and then to the mantle zone. Image credit, Allen 
Institute.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 4 | See next page for caption.
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Extended Data Figure 4 | Fate divergence occurs as cells become 
postmitotic. a, Supervised analysis: PCA of full dataset, run using only 
branch-dependent genes. Cells are grouped based on the maturation-
trajectory bin: the first five bins represent mitotic progenitors, the last 
four bins represent postmitotic cells which are coloured by branch ID. 
Mitotic cells fall within a homogeneous point cloud, with low variance on 
principal components 1 and 2, showing no evidence of fate bifurcation.  
b, To test whether our inability to detect fate bifurcations earlier in 
development was due to the lower sequencing depth of Drop-seq, we 
sequenced 400 Dlx6a-cre;RCEloxP negative ganglionic eminence cells 
(thereby enriching for mitotic progenitors), using a modified Smart-
seq2 protocol. Diffusion map analysis of these cells returned only two 
significant principal components, with no evidence of further structure. 
These components reflect our previously defined maturation trajectory, 
with DMC1 separating mitotic cells (left). c, Rare mitotic cells expressing  
canonical branch markers do not segregate on the diffusion plot.  
d–f, Branching analysis on mitotic progenitors. We repeated the branch 
analysis, previously computed on postmitotic cells (Fig. 3a), on mitotic 
progenitors from all three ganglionic eminences. Although we did 
observe computational evidence of branching, this does not represent 
fate bifurcations as we observed in postmitotic cells. Instead, cells from 
different branches could largely be separated into ‘early’, ‘intermediate’ 
and ‘late’ regions of mitotic pseudotime, with one branch being largely 
defined by the expression of pro-neural cell cycle regulators (for example, 
Ascl1). As these genes peak at intermediate stages, our branching patterns 
could reflect either the aberrant assignment of intermediate cells to a new 
branch, or reflect the potential of multiple modes of cell division (namely, 

direct versus indirect neurogenesis) occurring in the ventricular zone  
and subventricular zone. g, Genetic fate-mapping using Lhx8-cre/cerulean 
demonstrates that MGE branch three precursors give rise to the entire 
breadth of cholinergic projection (globus pallidus and nucleus basalis)  
and interneuron (striatum) populations. The cumulative longitudinal  
use of a constitutive Cre driver also results in extensive labelling of  
cortical interneurons owing to transient expression within this  
population. Scale bar, 500 μ​m. Ctx, cortex; Str, striatum; LS, lateral  
septum; MS, medial septum; NP, nucleus basalis; GP, globus pallidus.  
h, Our Lhx6–GFP-negative dataset contains both mitotic and postmitotic 
cells from the CGE and diffusion map analysis shows our previously 
defined maturation trajectory. i, j, To isolate postmitotic cells, we 
calculated a maturation trajectory (i), and used the cell cycle scores to 
identify the transition point between mitotic and postmitotic cells (j) as 
with the eminence datasets in Fig. 1. k, To avoid the possibility of FACS 
false-negative MGE cells contaminating our Lhx6–GFP-negative dataset, 
we clustered the postmitotic cells from this dataset, and filtered out three 
rare clusters where Lhx6 mRNA expression was detected in more than 
20% of cells (Supplementary Methods). l, m, We mapped postmitotic cells 
from the Lhx6–GFP-positive (l) and Lhx6–GFP-negative (m) datasets 
to the branches determined from the Drop-seq dataset (Supplementary 
Methods). Heat maps show scaled single-cell expression markers 
associated with each branch. n, Analogous to Fig. 3e, but also including 
the Lhx6–GFP-positive and Lhx6–GFP-negative datasets generated using 
10x Genomics, as a validation of the original Drop-seq datasets that were 
performed on wild-type mice.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 5 | See next page for caption.
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Extended Data Figure 5 | Filtering of E18.5 and P10 10x datasets 
and mapping of E18.5 cortex and subcortex neurons to E13.5/E14.5 
branches. a, c, t-SNE visualization of Dlx6a-cre;RCEloxP positive E18.5 
cortical cells (a) and Dlx6a-cre;RCEloxP positive P10 cortical cells (c). 
Although the Dlx6a-cre should mark only GABAergic eminence-derived 
cells, we identified rare populations that did not express canonical 
interneuron (IN) markers, probably representing false positives from 
FACS. b, d, Gene expression in these populations (E18.5 cells b, P10 
cells d; heat map shows average expression in group) identifies rare 
contaminating populations of microglia (micro), astrocytes (astro), 
oligodendrocyte precursor cells (OPCs) and oligodendrocytes (oligo); 
smooth muscle cells (SMC), stem cells (SC), projection neurons (PN). 
For all downstream analyses, we considered only cells in the interneuron 
cluster. e, t-SNE visualization of 8,382 Dlx6a-cre;RCEloxP positive 
E18.5 cortical cells (same dataset as in Extended Data Fig. 5a, but after 
removing contaminating populations). Each E18.5 cell was mapped to 
one of six precursor states (branch 1, 2, and 3 for Lhx6–GFP-positive and 

Lhx6–GFP-negative datasets), using a correlation-based distance metric 
(Supplementary Methods). This enabled us to assign a putative eminence 
and branch of origin for each of the E18.5 cortical cells. f, As expected, 
the vast majority of Dlx6a-cre;RCEloxP positive E18.5 cortical cells map 
to the interneuron precursor state, and are split between MGE and CGE-
derived precursors. By contrast, Dlx6a-cre;RCEloxP positive E18.5 cells 
from the subcortex primarily map to branches 2 and 3, consistent with 
our interpretation of these branches as precursor states for projection 
neurons; CX, cortex; SC, subcortex. g, h, The minority of Dlx6a-positive 
cortical cells mapping to precursor states 2 and 3 primarily co-express 
Meis2 (g) and Gad1 (h), probably representing a CGE-derived GABAergic 
population. These cells have been recently described as being present 
in the cortical white matter and probably represent projection neuron 
precursors21. i, j, Heat maps showing single-cell expression markers for the 
three different mapped branches of Dlx6a-cre;RCEloxP positive E18.5 cells 
from the cortex (i) and the subcortex (j).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 6 | Clustering of adult visual cortical neurons 
into 14 major non-overlapping inhibitory interneuron subtypes.  
a, Initial t-SNE visualization and graph-based clustering of 8,329 single 
cells individually isolated from P56 mouse visual cortex and sequenced 
with the Smart-Seq2 protocol. Data was downloaded from the publicly 
available resource hosted by the Allen Brain Atlas22 (Allen Cell Types 
Database, http://celltypes.brain-map.org/download (2015)). b, Of all cells, 

3,432 GABAergic interneurons were easily identified by the expression 
of Gad1 (left) and the absence of Slc17a7 (right), and were selected for 
downstream analysis. c, t-SNE visualization and graph-based clustering of 
the 3,432 GABAergic cells reveals 14 clusters. d, e, The clusters revealed 
in c could be broadly grouped into cardinal types based on the expression 
of canonical markers. f, Single-cell heat map showing scaled expression 
values for the best transcriptomic markers in each cluster.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 7 | Emergence of transcriptomically defined 
subtypes across development. Differentially expressed genes between 
MGE and CGE derived subsets (left), that are conserved in both 
developmental and P56 cells. Each conserved gene is placed on the 
heat map when it is first observed to be differentially expressed during 

development, and the number of conserved differentially expressed genes 
grows over time. The same analysis is shown for Pvalb and Sst subsets 
(middle), and for Vip and Id2 subsets (right). This figure is identical  
to Fig. 4e, but with all gene names displayed.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



ArticleRESEARCH

Extended Data Figure 8 | The integrated analysis agrees with an 
independent t-SNE analysis of each time point. a, t-SNE visualizations 
of interneuron precursors from E13.5, E18.5 and P10, calculated 
independently for each time point. Cells are coloured as in Fig. 4b–d, 
based on their mapping to P56 datasets in integrated analysis. However, 
since the t-SNE was performed separately for each time point, we can 
assess how the integrated analysis agrees with an independent analysis of 
each time point. In each case, we can see that the cardinal type separation 

that we observe via integrated analysis (Fig. 4b–d) is consistent with an 
independent analysis of each dataset. Integrated analysis with the P56 
dataset results in clearer separation, and enables us to map developmental 
precursors to adult subtypes. b, Expression of Gad1 and Meis2 in single-
cell datasets. Cells expressing both genes are probably projection neuron 
precursors that have recently been described in the CGE21, but whose 
progeny is not captured in the mouse visual cortex dataset. Therefore, 
these cells are correctly mapped as unassigned.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 9 | Transcriptional segregation into cortical 
interneuron subtypes at different developmental stages. a, t-SNE 
visualization of all P10 cells mapping to a P56 subtype (as in right 
column of Fig. 4c, but cells are coloured by subtype instead of cardinal 
type). b, t-SNE visualization as in a, but zoomed in on each cardinal type 
independently. c, Single-cell heat maps showing the best transcriptomic 
markers marking each subtype, for the Sst (left), Vip (middle) and Id2 
(right) cardinal types, within P10 cells. We did not observe any statistically 

significant markers subdividing Pvalb subtypes. d, t-SNE visualization  
of all E18.5 cells mapping to a P56 subtype (as in right column of  
Fig. 4c, but cells are coloured by subtype instead of cardinal type). e, t-SNE 
visualization as in d, but zoomed in on each cardinal type independently. 
f, Single-cell heat maps showing the best transcriptomic markers marking 
each subtype, for the Sst (left), Vip (middle) and Id2 (right) cardinal types, 
within E18.5 cells. We did not observe any statistically significant markers 
subdividing Pvalb subtypes.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 10 | A subset of embryonic markers of cardinal 
type specification in mouse are conserved in adult human neurons. 
a, Quantification of Pvalb-positive cortical interneurons across the 
different cortical layers of the control and Mef2c cortical knockout 
(Dlx6a-cre;Mef2cloxP/loxPRCE) animals. Mef2c cortical knockout results in 
a reduction in Pvalb density in all cortical layers except for layer 1. Error 
bars reflect s.e.m.; unpaired t-test; *​P <​ 0.05, *​*​P <​ 0.01, *​*​*​P <​ 0.001; 
n =​ 4 brains each for cortical knockout and control, 3–4 sections per 

brain. b–d, Scatter plot comparing average expression of 3,035 GABAergic 
single nuclei from post-mortem human neurons, after segregation into 
Pvalb and Sst (b), Vip and Id2 (c) and MGE and CGE inferred origins (d). 
Each dot represents the expression of a gene in human cells. Markers of 
transcriptomic cardinal types from our E13.5 and E18.5 datasets (from 
Fig. 4e) are shown in red or blue dots. Mouse embryonic markers that also 
differ by 1.5-fold in human have gene names annotated on the plot.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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    Experimental design
1.   Sample size

Describe how sample size was determined. N/A

2.   Data exclusions

Describe any data exclusions. See manuscript page 2, paragraph 3: 
The focus of our study was to investigate inhibitory interneuron development. 
Therefore, when we identified small populations of excitatory neurons (Neurod6; 
2.6% of cells) and endothelial cells (Igfbp7; 0.7% of cells) (Fig. 1B, C), both were 
excluded from further analysis. 

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

See manuscript page 2, Paragraph 3: 
After cell dissociation, we utilized Drop-seq to sequence the transcriptomes of 
5,622 single cells from the MGE, 7,401 from the CGE, and 8,543 from the LGE, 
using three independent biological replicates for each eminence.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

N/A

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

N/A

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Combination of custom R scripts and existing R packages as outlined in the 
supplemental methods section

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

N/A

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

See Supplemental methods  
 
Primary antibodies: goat anti-ChAT (1:250, Millipore AB144P), goat anti-Pvalb 
(1:1000, Swant PVG213), rabbit anti-SST (1:3000, Peninsula Labs T-4102), rabbit 
anti-GABA (1:2000, Sigma A2052), chicken anti-GFP (Aves Labs 1020), rabbit anti-
DsRed (Clontech 632496),Anti-GFP Chicken Polyclonal IgY (1:1000) (Abcam 
Ab13970), Anti-Parvalbumin (Pvalb) Goat (Swant PVG 213) and Anti-Parvalbumin 
(Pvalb) Rabbit (Swant PV25), rat anti-SST (1:250, Chemicon), mouse anti-Pvalb 
(1:1000, Sigma), and rabbit anti-VIP (1:250, ImmunoStar), rabbit anti-Neuropeptide 
Y (1:500; Incstar), mouse anti-Calretinin (1:1500; Chemicon). 
 
Secondary antibodies: Alexa Fluor 488-donkey anti-chicken, Alexa Fluor 594-
donkey 5’-anti-rabbit, and Alexa Fluor 647-donkey anti-goat and rabbit (all Jackson 
Immunoresearch), secondary Alexa antibodies (Life Technologies). 
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10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. N/A

b.  Describe the method of cell line authentication used. N/A

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

N/A

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

N/A

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

See supplementary methods, section “Animal Work”

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

N/A
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