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Developmental diversification of cortical
inhibitory interneurons

Christian Mayerb>34#, Christoph Hafemeister>*, Rachel C. Bandler"*, Robert Machold', Renata Batista Brito"*, Xavier Jaglin"?,
Kathryn Allaway"?, Andrew Butler®®, Gord Fishell>**7 & Rahul Satija®°

Diverse subsets of cortical interneurons have vital roles in higher-order brain functions. To investigate how this diversity
is generated, here we used single-cell RNA sequencing to profile the transcriptomes of mouse cells collected along a
developmental time course. Heterogeneity within mitotic progenitors in the ganglionic eminences is driven by a highly
conserved maturation trajectory, alongside eminence-specific transcription factor expression that seeds the emergence
of later diversity. Upon becoming postmitotic, progenitors diverge and differentiate into transcriptionally distinct states,
including an interneuron precursor state. By integrating datasets across developmental time points, we identified shared
sources of transcriptomic heterogeneity between adult interneurons and their precursors, and uncovered the embryonic
emergence of cardinal interneuron subtypes. Our analysis revealed that the transcription factor Mef2c, which is linked
to various neuropsychiatric and neurodevelopmental disorders, delineates early precursors of parvalbumin-expressing
neurons, and is essential for their development. These findings shed new light on the molecular diversification of early
inhibitory precursors, and identify gene modules that may influence the specification of human interneuron subtypes.

Cortical inhibitory neurons are a diverse population that varies
widely in morphology, connectivity and patterns of activity'. This
group of neurons is developmentally derived from progenitors
located in embryonic proliferative zones known as the medial, cau-
dal and lateral ganglionic eminences (MGE, CGE and LGE, respec-
tively)!. Although each eminence gives rise to non-overlapping
types of interneurons, the genetic programs driving interneuron fate
specification and maintenance are not well understood. Diversity
is first apparent in the regional expression of a limited number of
transcription factors within the ganglionic eminences®*. For exam-
ple, the transcription factor Nkx2-1 is expressed throughout the
entire MGE, but is not expressed in the CGE or LGE*, whereas the
transcription factor Lhx8 is expressed only within a subdomain
of the MGE?. However, how these early sources of heterogeneity
generate the vast diversity of adult interneurons remains unclear, a
question that is complicated by the fact that the ganglionic eminences
also generate numerous subcortical projection neuron types such as
the cholinergic cells of the basal ganglia>®.

Here we combine multiple single-cell RNA sequencing (scRNA-seq)
approaches with genetic fate-mapping techniques to explore the emer-
gence of cellular heterogeneity during early mouse development.
Within mitotic progenitors, we found a highly conserved maturation
trajectory, accompanied by eminence-specific transcription factor
expression that seeds the emergence of later cell diversity. Alongside
the exit from the cell cycle, we reconstructed bifurcations into three
distinct precursor states, which were highly correlated across emi-
nences, and included a cortical interneuron ground state. Lastly, guided
by the genetic diversity seen in mature populations, we connected the
transcriptomic heterogeneity of adult interneurons with their embry-
onic precursors. Our integrated longitudinal analysis reveals the
emergence of interneuron subtype identity during development, and
identifies genetic regulators responsible for these fate decisions.

Transcriptional profiling of ganglionic eminence cells

We manually dissected ganglionic eminence cells from wild-type
mouse embryos at embryonic day (E)13.5 (for the MGE) or E14.5 (for
the CGE and LGE)—time points corresponding to peak neurogenesis
in these structures”®, which include both dividing mitotic progenitors
as well as postmitotic precursor cells (Fig. 1a, Supplementary Table 1).
After cell dissociation, we used droplet-based single-cell mnRNA
sequencing (Drop-seq)’ to sequence the transcriptomes of 5,622 single
cells from the MGE, 7,401 from the CGE and 8,543 from the LGE, from
replicate experiments, observing on average 1,626 unique molecular
identifiers (UMIs) per cell. We performed latent variable regression to
mitigate heterogeneity resulting from cell-cycle state!®!! (Extended
Data Fig. 1)—preventing subsequent analysis from being dominated
by mitotic phase-specific gene expression—and filtered out rare con-
taminating populations of excitatory neurons (Neurod6; 2.6% of cells)
and endothelial cells (Igfbp7; 0.7% of cells) (Fig. 1b, ¢). The remaining
96.7% of cells were neuronal progenitors and precursors derived from
the ganglionic eminences (for example, DIx1; Fig. 1b, ¢). Within this
population, the expression of early, intermediate and late marker genes
was strongly associated with the top diffusion map coordinates (DMC;
Extended Data Fig. 1). To establish a quantitative temporal account of
differentiation programs within each eminence, we fit a principal curve
through the DMC, representing an ordered ‘maturation trajectory’ for
single cells based on their expression profiles'? (Fig. 1d). We obtained
very similar trajectories using approaches based on principal compo-
nent analysis or reverse graph embedding'® (Extended Data Fig. 1),
and observed that the maturation trajectory recapitulated known
dynamics associated with neuronal maturation (Fig. 1e) while also seg-
regating ganglionic eminence cells into mitotic and postmitotic phases
(Fig. 1f, Extended Data Fig. 1). To independently confirm the associ-
ation of the maturation trajectory with real time, we used FlashTag
technology' to fluorescently label cells in the ventricular zone'® of the
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Figure 1 | Transcriptional landscape of single cells in the ganglionic
eminences. a, Schematic of experimental workflow. Axes: A, anterior;

D, dorsal; L, lateral; M, medial; P, posterior; V, ventral. b, Visualization

of Drop-seq data from ganglionic eminence cells using ¢-distributed
stochastic neighbour embedding. ¢, Canonical marker expression

in ganglionic eminence precursors, excitatory neurons and vascular
endothelial cells; colours as in b. d, A principal curve was fitted to the
dominant diffusion map coordinates to order cells along a maturation
trajectory. e, Expression (molecules per cell) of canonical regulators, as

a function of the position along the maturation trajectory. The curve
reflects local averaging of single-cell expression. Locally averaged values
were multiplied by five for visualization on the same scale as the molecule
counts. f, Percentage of cycling cells as a function of the position along
the maturation trajectory; the dotted blue line marks the inferred mitotic-
to-postmitotic transition. g, Coronal brain sections of the ganglionic
eminences, as cells migrate away from the ventricular zone (the apical
surface of the ventricular zone is at the top of the images). Images were
taken 3, 6, 12 and 24 h after fluorescent labelling with FlashTag technology.
Scale bar, 50 pm. h, Maturation score distributions of FlashTag labelled
cells, separated by time point.

ganglionic eminences, and performed scRNA-seq on cohorts of 3-, 6-,
12- and 24-h-old neurons as they migrated away from the ventricle
(Supplementary Table 1, Fig. 1g). As expected, neurons generated at
these sequential time points were distributed progressively along the
maturation trajectory timeline (Fig. 1h, Extended Data Fig. 1).

The MGE and CGE are known to produce non-overlapping types of
cortical interneurons!'®. To identify regionally expressed transcription
factors>*17, we performed a differential expression analysis and found
a small number of genes for transcription factors that were enriched
in mitotic progenitors within particular eminences (Fig. 2a, Extended
Data Fig. 2, Supplementary Table 2), many of which (for example,
Nr2f1, Nr2f2, Nkx2-1) have previously been characterized®. Next, we
identified the sequential patterns of gene expression characterizing
the initial stages of cell differentiation. The majority of dynamically
expressed genes followed robust and highly reproducible sequential
waves of gene expression in all three eminences (Fig. 2b, Extended Data
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Figure 2 | A common developmental program of gene expression
functions in the mitotic progenitors of all three ganglionic eminences.
a, Volcano plots depicting differential gene expression across eminences
for early mitotic cells (maturation score < 0.3). Transcription factors

are annotated. b, Gene-expression dynamics in mitotic cells, based on
local averaging of single-cell data, plotted along maturation score for 840
developmentally regulated genes that were conserved across eminences.
¢, ISH patterns of early, intermediate and late maturation-trajectory genes
in the ganglionic eminences that are highly expressed within anatomical
boundaries of the ventricular zone, subventricular zone and mantle zone,
respectively. d, The variance explained individually by a set of annotated
factors, relative to the variance explained by the first principal component.
Calculated independently for maturation score (MS), cell cycle score
(CCS), eminence of origin (Emin), UMIs per cell and reads per cell.

Fig. 2d, Supplementary Table 3). In situ hybridization (ISH) confirmed
that these waves describe the sequential expression of stem-cell (for
example, Nes), proneural (for example, AsclI) and neurogenic genes
(for example, Dcx), approximately correlating with the spatiotempo-
ral progression from the ventricular zone to the mantle zone (Fig. 2c,
Extended Data Fig. 3). Developmental progression and cell cycle were
the primary sources of transcriptional variance in these progenitors
(Supplementary Methods), with maturation proportionally explaining
sixfold more variance compared to eminence-of-origin (Fig. 2d).

To detect the potential fate divergence of cells along the maturation
trajectory, we bootstrapped the construction of a minimum spanning
tree'® (Fig. 3a, Supplementary Methods), and summarized the com-
bined result using multidimensional scaling. We first observed evidence
of clear fate bifurcations as cells become postmitotic, and precursors
from all ganglionic eminences branched into distinct precursor states
(Fig. 3b, Supplementary Methods). The sequencing of MGE progeni-
tors at substantially higher depth with plate-based scRNA-seq revealed
no transcriptomic evidence of similar bifurcations within mitotic cells
(Extended Data Fig. 4a—c; Supplementary Table 1). Moreover, when
we performed the unsupervised branching analysis only in mitotic
progenitors, we found no evidence for the specification of distinct
interneuron fates. Instead, consistent with our previous analysis of the
maturation trajectory, heterogeneity was driven primarily by matu-
ration state or cell cycle, which may reflect the existence of mitotic
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Figure 3 | Postmitotic cells from all eminences pass through distinct
precursor states. a, Multidimensional scaling (MDS) based on the
average distance along bootstrapped minimum spanning trees.

b, Minimum spanning tree traversal assigned cells to the trunk and one of
three branches. ¢, Quantitative contributions of cells per branch plotted
for each ganglionic eminence. d, Hierarchical clustering of branch gene
expression correlation. Gene expression was averaged for cells from the
same ganglionic eminence and branch. e, Heat map depicting the top
transcriptomic markers for each branch. f, Co-localization of Ai9 from
Lhx8-cre;Ai9 mice with, from left to right, choline acetyltransferase
(ChAT) in the striatum, medial septum, and nucleus basalis, and Pvalb
in the globus pallidus. Scale bars, 300 pm. g, Percentage of total ChAT™
cells labelled with tdTomato in Lhx8-cre;Ai9 mice. n = 15 brain sections
(striatum), n =4 (medial septum), n =8 (nucleus basalis); 2 mice. h, The
percentage of total Pvalb™ cells labelled with tdTomato in Lhx8-cre;Ai9

progenitors undergoing direct and indirect neurogenesis within the
ventricular and subventricular zones'® (Extended Data Fig. 4d-f).
Nonetheless, we cannot fully exclude the possibility of earlier fate-
determination in mitotic progenitors.

We assigned cells to branches by traversing the final minimum
spanning tree and annotating major splits (Fig. 3b, c). Notably, even
though branched trajectories for each eminence were calculated inde-
pendently, branch gene expression markers were highly correlated
across eminences (Fig. 3d, e). This indicates that, although each gan-
glionic eminence generates different cell populations, upon becoming
postmitotic, cells from all eminences pass through conserved precursor
states. One group of highly correlated branches (precursor state 1)
expressed known regulators of interneuron development (Arx, Maf;
Fig. 3e, Supplementary Table 4), whereas a second group of branches
(precursor state 2) expressed known projection neuron marker genes
(Isl1, EbfI; Fig. 3e, Supplementary Table 4). The third group of branches
(precursor state 3) exhibited weaker correlation across eminences, with
the transcription factor Lhx8 representing a marker gene for the MGE

Avg UMis in CGE [log, ]

mice. n=10 brain sections (striatum), n=>5 (globus pallidus), n=4
(cortex), 2 mice. Error bars in g and h indicate standard deviation across
all quantified sections. i, Mapping of E18.5 cortical (CX) and subcortical
(SC) cells to E13.5 (MGE) or E14.5 (CGE, LGE) branches based on marker
gene expression correlations. j, Relative variance explained individually
by annotated factors for postmitotic cells at E13.5 or E14.5 (branch,

CCS, Emin, UMIs per cell and reads per cell) relative to the variance
explained by the first principle component. Residual cell cycle variation is
due to our conservative cutoff for the mitotic-postmitotic transition.

k, Differential expression analysis between MGE and CGE postmitotic
cells in the interneuron precursor state at E13.5 or E14.5 (left). These genes
tend to remain differentially expressed between MGE and CGE-derived
populations at E18.5 (middle), which is not the case in E13.5 mitotic
progenitors (right); differentially expressed genes are depicted in blue.

branch 3 (Fig. 3e). Genetic fate-mapping using Lhx8-cre suggested that
neurons within this branch account for the majority, if not all, of the
cholinergic projection (nucleus basalis, medial septum) and cholinergic
interneuron (striatum) populations, as well as the majority of parvalbu-
min (Pvalb)-positive projection neurons in the globus pallidus™® (Fig.
3f-h, Extended Data Fig. 4g).

Diversity emerges from a common precursor state

To confirm that cells passing through precursor state 1 give rise to
cortical interneurons, we used genetic fate-mapping strategies to enrich
for postmitotic cells derived from ganglionic eminences at E18.5 for
scRNA-seq (Supplementary Methods, Extended Data Fig. 4). Using
a correlation-based distance metric (Supplementary Methods) we
found that, as expected®’, more than 80% of DIx6a-cre fate-mapped
cortical cells at E18.5 were assigned to precursor state 1, on the basis of
their expression of canonical regulators of interneuron development
(Fig. 31, Extended Data Fig. 5). The remaining DIx6a-cre fate-mapped
cortical population were assigned to precursor states 2 and 3 (Fig. 3,
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Figure 4 | Integrating developmental scRNA-seq datasets to link
embryonic heterogeneity with adult interneuron subtypes. a, Graph-
based clustering of interneurons from the adult mouse visual cortex (data
from ref. 22 and Allen Cell Types Database, http://celltypes.brain-map.org/
download (2015)). Cluster names denote cardinal classes associated with
canonical markers (for example Pvalb or Sst), with additional enumerated
subdivisions (for example, Vip-1 or Vip-2). b-d, Integration of P10 (b),
E18.5 (c), E13.5 (d) precursors with P56 cortical interneurons based

on shared sources of variation. Top, adult cells coloured by subtype and
precursor cells in grey. Bottom, precursor cells coloured by adult cardinal
types to which they are assigned; blue, Pvalb; orange, Sst; violet, Vip; green,
Id2; shades of gray, Igfbp6, Th or Nosl. e, Differentially expressed genes
between CGE- and MGE-derived subsets (left); these genes are conserved
in both developmental and adult cells. Each conserved gene is placed

on the respective heat map when it is first observed to be differentially
expressed during development. The same analysis was performed for Pvalb

Extended Data Fig. 5), probably including the Meis2-expressing CGE-
derived GABAergic population that has recently been described*!
(Extended Data Fig. 5). Comparison of the expression profiles of cor-
tical interneuron precursors (precursor state 1) from the MGE and
CGE revealed differentially expressed genes, the expression patterns of
which are largely maintained in the cortex at later time points (Fig. 3k).
Consistently, branching trajectories represented the most important
source of variation in these cells, with an increasing contribution attrib-
utable to eminence of origin compared to mitotic progenitors (Fig. 3j).
Thus, our data reveal how postmitotic pan-eminence transcriptional
programs (precursor states) emerge, and in parallel, eminence-specific
transcriptional programs escalate.

We next asked when subtype-specific gene expression patterns first
appear during interneuron development. In the adult mouse, using a
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100

and Sst subsets (middle), and Vip and Id2 subsets (right). f, Conditional
deletion of Mef2c in inhibitory neurons using Dlx6a-cre;Mef2c'**"/"**' RCE.
Immunostaining of P20-P22 somatosensory cortex using anti-GFP (green)
and anti-Pvalb (red); counterstaining with 4,6-diamidino-2-phenylindole
(DAPI) shows cortical layers. Scale bar, 200 pum. g, Density quantification
of cortical-interneuron subtypes in the P21 somatosensory cortex using
antibodies for Pvalb, Sst, Vip, Npy, and calretinin (CR). Error bars reflect
s.e.m.; two-tailed unpaired ¢-test, **P < 0.01; n= 3 brains each for cortical
knockout and control. Error bars reflect s.e.m.; two-tailed unpaired ¢-test,
*%P < 0.01; n =3 brains each for cortical knockout and control. h, Scatter
plot comparing average expression of GABAergic single nuclei from post-
mortem human neurons after segregation into Pvalb and Sst types. Each
dot represents the expression of a human gene. Markers of embryonic
cardinal types are shown in green or blue dots, with a subset of gene names
annotated.

publicly available dataset* (© 2015 Allen Institute for Brain Science,
Allen Cell Types Database, available from: http://celltypes.brain-map.
org/download) we identified 14 inhibitory interneuron subpopulations
that encompass known anatomically and physiologically defined sub-
types*>** (Fig. 4a, Supplementary Methods, Extended Data Fig. 6).
These could be allocated into non-overlapping cardinal types of corti-
cal interneurons (Pvalb, Sst, Vip, Id2, Th, Nosl, Igfbp6). We reasoned
that if we could identify heterogeneous gene modules in developing
cells that were shared with adult interneurons, we could identify early
patterns of specification in precursors. We therefore applied our
recently developed tool for the pairwise integration of scRNA-seq
datasets*>?® (Fig. 4b-d), which ‘aligns’ cell types across datasets based
on conserved sources of variation as identified by canonical correlation
analysis. This procedure therefore links the heterogeneity observed in
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adult cells with heterogeneity in their precursors. On the basis of this
alignment, P10 cells exhibited strong evidence of transcriptomic sep-
aration beyond cardinal types (Fig. 4b), including clear segregation
between Sst Martinotti and non-Martinotti (X94), Vip bipolar and
multipolar, and Id2 neurogliaform and non-neurogliaform interneu-
ron subtypes (Fig. 4e, Extended Data Figs 7-9).

Embryonic stages also displayed strong evidence of interneuron
specification. On examination of the earliest stages, we observed a
separation of Pvalb- and Sst-precursor cells within the E13.5 post-
mitotic populations (Fig. 4d), and identified transcriptomic markers
that were conserved into adulthood (early marker genes for Pvalb
neurons: Mef2c, Erbb4, Plcxd3; early marker genes for Sst neurons:
Sst, Tspan7, Satbl; Fig. 4e, Extended Data Fig. 7). A minority of E13.5
cells also mapped to Vip and Id2 subsets, but conserved transcriptomic
markers did not reach statistical significance until E18.5 (E18.5 markers
of Vip neurons: Vip, Synpr, Igfl; E18.5 markers of Id2 neurons: Reln,
Mppedl, Id2). By E18.5, all cardinal types of interneurons could be
identified, and additional subtypes appeared to be transcriptionally
specified as well (Fig. 4e, Extended Data Fig. 9). Notably, segregation
into subtypes became evident at different developmental stages. For
example, the clear emergence of Sst, Vip and Id2 subtypes was apparent
for a subset of cells at E18.5 (Extended Data Fig. 8), but we were unable
to clearly subdivide Pvalb neurons by P10, in accordance with their late
maturation”’. The results of our integrated analyses were in agreement
with independent unsupervised analysis of each developmental stage
(Extended Data Fig. 8). Consistent with our earlier findings (Fig. 2),
we did not observe common sources of variation shared between adult
interneurons and mitotic progenitors.

In addition to observing the potential specification of embryonic
precursors, our list of cardinal type and subtype markers that
are conserved from the ganglionic eminences through adulthood
suggests a set of genetic regulators that may have important roles in
this process. For example, the gene encoding the transcription factor
Mef2c was among those that discriminated early Pvalb-precursors
from other MGE-derived interneuron types (Fig. 4e). Genome-wide
association studies have linked mutations in this gene to Alzheimer’s
disease, schizophrenia and other neurodevelopmental disorders®®.
Consistent with our predictions, conditional deletion of Mef2c in
inhibitory neurons led to a specific loss of Pvalb-interneurons by P20
in cortical layers 2-6 (Fig. 4f, g, Extended Data Fig. 10), indicating that
Mef2c is essential for the generation of this population. Notably, when
examining a published single-nucleus RNA-seq dataset of human post
mortem tissue?, we found that a subset of embryonic cardinal type
markers from our mouse dataset (including Mef2c) was also differen-
tially expressed in adult human interneurons (Fig. 4h). Therefore, the
genes we identified as defining embryonic cardinal types are candi-
dates for the regulation of interneuron fate determination and main-
tenance across species.

Discussion

Our work reveals how subtype-specific heterogeneity progresses from
the expression of cardinal genes in progenitors to the emergence of
specific subtypes that populate the mature cortex. Postmitotic cells in
the ganglionic eminences branch into distinct precursor states, rep-
resenting populations fated to give rise to interneurons or projection
neurons. It seems probable that the superimposition of precursor-state
genes and eminence-specific genes act coordinately to bestow the com-
mon and unique characteristics within particular GABAergic popula-
tions, respectively.

Consequently, precursor genes are likely to direct the developmental
cascade and acquisition of general properties that are shared within
a given type. This probably ensures, for instance, that interneurons
migrate tangentially to the cortex or the hippocampus, whereas pro-
jection neurons remain positioned ventrally and form long-range
projections. Supplementing these more general programs are the
eminence-specific genes that, for example, may direct the axons of
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parvalbumin cortical interneurons to form perisomal baskets and
the efferents of somatostatin cortical interneurons to reliably target
dendrites. These distinct differentiation modules reflect the major
cardinal types of cortical interneuron precursors.

The identification of early precursors offers insight into how specific
cell types emerge and provides genetic access to immature cortical
interneuron subtypes. To broaden the implications of these results,
our findings indicate that components of the transcriptional networks
underlying interneuron fate specification are conserved between mouse
and human, including Mef2c and other genes associated with neuropsy-
chiatric disorders. This highlights the power of combining single-cell
genomics with analytical tools to identify genes that have important
functional roles in the establishment and maintenance of interneuron
fates. Our findings mark an initial but important step towards the goal
of ultimately linking specific genes to their aetiology in neurodevelop-
mental and neuropsychiatric disorders.

Online Content Methods, along with any additional Extended Data display items and
Source Data, are available in the online version of the paper; references unique to
these sections appear only in the online paper.

Received 30 January 2017; accepted 12 February 2018.
Published online 5 March 2018.

1. Kepecs, A. & Fishell, G. Interneuron cell types are fit to function. Nature 505,
318-326 (2014).

2. Flames, N. et al. Delineation of multiple subpallial progenitor domains by the
combinatorial expression of transcriptional codes. J. Neurosci. 27, 9682-9695
(2007).

3. Yun, K, Garel, S, Fischman, S. & Rubenstein, J. L. R. Patterning of the lateral
ganglionic eminence by the Gsh1 and Gsh2 homeobox genes regulates striatal
and olfactory bulb histogenesis and the growth of axons through the basal
ganglia. J. Comp. Neurol. 461, 151-165 (2003).

4. Shimamura, K, Hartigan, D. J,, Martinez, S., Puelles, L. & Rubenstein, J. L.
Longitudinal organization of the anterior neural plate and neural tube.
Development 121, 3923-3933 (1995).

5. Nébrega-Pereira, S. et al. Origin and molecular specification of globus pallidus
neurons. J. Neurosci. 30, 2824-2834 (2010).

6. Zhao, Y. et al. The LIM-homeobox gene Lhx8 is required for the development of
many cholinergic neurons in the mouse forebrain. Proc. Nat/ Acad. Sci. USA
100, 9005-9010 (2003).

7. Inan, M., Welagen, J. & Anderson, S. A. Spatial and temporal bias in the mitotic
origins of somatostatin- and parvalbumin-expressing interneuron subgroups
and the chandelier subtype in the medial ganglionic eminence. Cereb. Cortex
22,820-827 (2012).

8. Miyoshi, G. et al. Genetic fate mapping reveals that the caudal ganglionic
eminence produces a large and diverse population of superficial cortical
interneurons. J. Neurosci. 30, 1582-1594 (2010).

9. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of
individual cells using nanoliter droplets. Cell 161, 1202-1214 (2015).

10. Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in
single-cell RNA-sequencing data reveals hidden subpopulations of cells.

Nat. Biotechnol. 33, 155-160 (2015).

11. Tirosh, . et al. Dissecting the multicellular ecosystem of metastatic melanoma
by single-cell RNA-seq. Science 352, 189-196 (2016).

12. Petropoulos, S. et al. Single-cell RNA-seq reveals lineage and X chromosome
dynamics in human preimplantation embryos. Cell 165, 1012-1026 (2016);
erratum 165, 1012-1026, (2016).

13. Qiu, X. et al. Reversed graph embedding resolves complex single-cell
trajectories. Nat. Methods 14, 979-982 (2017).

14. Quah, B. J. C. & Parish, C. R. The use of carboxyfluorescein diacetate
succinimidyl ester (CFSE) to monitor lymphocyte proliferation. J. Vis. Exp.
https://doi.org/10.3791/2259 (2010).

15. Telley, L. et al. Sequential transcriptional waves direct the differentiation of
newborn neurons in the mouse neocortex. Science 351, 1443-1446 (2016).

16. Rudy, B, Fishell, G, Lee, S. & Hjerling-Leffler, J. Three groups of interneurons
account for nearly 100% of neocortical GABAergic neurons. Dev. Neurobiol. 71,
45-61 (2011).

17. Waclaw, R. R, Ehrman, L. A, Pierani, A. & Campbell, K. Developmental origin of
the neuronal subtypes that comprise the amygdalar fear circuit in the mouse.
J. Neurosci. 30, 6944-6953 (2010).

18. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are
revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32,
381-386 (2014).

19. Petros, T. J., Bultje, R. S., Ross, M. E., Fishell, G. & Anderson, S. A. Apical versus
basal neurogenesis directs cortical interneuron subclass fate. Cell Rep. 13,
1090-1095 (2015).

20. Wichterle, H., Turnbull, D. H., Nery, S., Fishell, G. & Alvarez-Buylla, A. In utero
fate mapping reveals distinct migratory pathways and fates of neurons born in
the mammalian basal forebrain. Development 128, 3759-3771 (2001).

22 MARCH 2018 | VOL 555 | NATURE | 461

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.


http://www.nature.com/doifinder/10.1038/nature25999
https://doi.org/10.3791/2259

ARTICLE

21. Frazer, S. et al. Transcriptomic and anatomic parcellation of 5-HT3aR
expressing cortical interneuron subtypes revealed by single-cell RNA
sequencing. Nat. Commun. 8, 14219 (2017).

22. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell
transcriptomics. Nat. Neurosci. 19, 335-346 (2016).

23. Tremblay, R, Lee, S. & Rudy, B. GABAergic interneurons in the neocortex: from
cellular properties to circuits. Neuron 91, 260-292 (2016).

24. Petilla Interneuron Nomenclature Group. Petilla terminology: nomenclature of
features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9,
557-568 (2008).

25. Butler, A. & Satija, R. Integrated analysis of single cell transcriptomic data
across conditions, technologies, and species. Preprint at https://www.biorxiv.
org/content/early/2017/07/18/164889 (2017).

26. Butler, A, Hoffman, P, Smibert, P, Papalexi, E. & Satija, R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species.
Nat. Biotechnol. https://doi.org/10.1038/nbt.4096 (2018).

27. Alcantara, S., de Lecea, L., Del Rio, J. A, Ferrer, |. & Soriano, E. Transient
colocalization of parvalbumin and calbindin D28k in the postnatal cerebral
cortex: evidence for a phenotypic shift in developing nonpyramidal neurons.
Eur. J. Neurosci. 8, 1329-1339 (1996).

28. Harrington, A. J. et al. MEF2C regulates cortical inhibitory and excitatory
synapses and behaviors relevant to neurodevelopmental disorders. eLife 5,
140 (2016).

29. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq.

Nat. Methods 14, 955-958 (2017).

Supplementary Information is available in the online version of the paper.

462 | NATURE | VOL 555 | 22 MARCH 2018

Acknowledgements We thank members of the Fishell and Satija laboratories,
and C. Desplan, for feedback and discussion; L. Harshman, B. Bracken and
W. Stephenson for assistance with scRNA-seq experiments; and

N. Habib for assistance with published datasets. This work was supported

by National Institutes of Health (NIH) grants RO1 NS074972 (G.F.), RO1
NS081297 (G.F.), MH071679-12 (G.F. and R.S.), NIH DP2-HG-009623 (R.S.),
European Molecular Biology Organization ALTF 1295-2012 (C.M.), Deutsche
Forschungsgemeinschaft Postdoctoral Fellow (C.H.), NIH F30MH114462
(R.C.B.), T32GM007308 (R.C.B.), NIH F31NS103398 (K.A.), and National
Science Foundation DGE1342536 (A.B.). G.F. is also supported by a grant from
the Simons Foundation (274578).

Author Contributions C.M,, C.H., R.C.B,, G.F. and R.S. conceived the research.
C.M. and R.C.B. led experimental work, assisted by R.M., R.B.B., XJ.,, K.A. and
supervised by G.F. C.H. led computational analysis, assisted by C.M. and A.B.,
and supervised by R.S. All authors participated in interpretation and writing the
manuscript.

Author Information Reprints and permissions information is available at
www.nature.com/reprints. The authors declare no competing interests. Readers
are welcome to comment on the online version of the paper. Publisher’s

note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations. Correspondence and requests for
materials should be addressed to G.F. (gordon_fishell@hms.harvard.edu) or
R.S. (rsatija@nygenome.org).

Reviewer Information Nature thanks A. Klein and the other anonymous
reviewer(s) for their contribution to the peer review of this work.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.


https://www.biorxiv.org/content/early/2017/07/18/164889
https://www.biorxiv.org/content/early/2017/07/18/164889
https://doi.org/10.1038/nbt.4096
http://www.nature.com/doifinder/10.1038/nature25999
http://www.nature.com/reprints
http://www.nature.com/doifinder/10.1038/nature25999
mailto:gordon_fishell@hms.harvard.edu
mailto:rsatija@nygenome.org

METHODS

Data reporting. No statistical methods were used to predetermine sample size.
The experiments were not randomized and the investigators were not blinded to
allocation during experiments and outcome assessment.

Animals. All mouse colonies were maintained in accordance with protocols
approved by the Institutional Animal Care and Use Committee at the NYU School
of Medicine. Mouse strains used are the following: wild-type Swiss Webster females
(Taconic Biosciences), Dix6a(Tg)-cre (ref. 30), Lhx6(BAC)-GFP (GENSAT), Lhx8-
cre/cerulean (Jax stock #023453), Rosa26LSL-tdTomate (A;9) (ref. 31), Rosa26 (CAG)-
LSL-eGFP (RCE"*P) (Jax stock #32037) (ref. 32), DIx5/6( Tg)-cre/eGFP (Jax stock
#023724; for characterization information, see images at the Allen Institute for
Brain Science website (http://connectivity.brain-map.org/transgenic/imageseries/
list/1.html?gene_term=DIx5-CreERT2)). and MefZCﬂ/ﬂ (ref. 33). Both male and
female mice were used for all single-cell RNA sequencing experiments.
Wild-type Drop-seq experiments. Mouse embryos at 13.5 (MGE) and 14.5 (CGE
and LGE) days’ gestation were isolated from 6-8-week-old wild-type Swiss Webster
timed-pregnant dams ordered from Taconic Biosciences. Embryos were staged in
days post coitus, with embryonic day (E) 0.5 defined as noon of the day a vaginal
plug was detected after overnight mating. The method of euthanasia for pregnant
dams was inhaled-isoflurane overdose, and death was confirmed with decapitation.
Surgical access to the uterine horns enabled removal of embryos. After removal
from the mother, embryos were stored on ice in Leibovitz’s L-15 medium and
1% fetal bovine serum. Brains were removed from the embryos and embedded
in 1% ultrapure low melting point agarose and sectioned in 50-pum sections with
a vibratome (Leica VT1200S). The MGE, CGE or LGE were dissected from each
embryo. MGEs were dissected from horizontal brain sections, whereas CGEs and
LGEs were dissected from coronal brain sections. Tissue from several embryos was
pooled together before dissociation.

Single-cell dissociation. Embryonic brain tissue pooled from several embryos
was dissociated into a single-cell suspension using a papain dissociation system
(Worthington Biochemical) according to the manufacturer’s instructions. Postnatal
brain tissue was dissociated with 1 mg ml~! of pronase (Roche, #10 165 921 001)
in ice-cold prebubbled artificial cerebrospinal fluid for 25 min.
Fluorescence-activated cell sorting. Fluorescent cells from Dix6a-cre;Ai9, Dix6a-
cre;RCE™P, Lhx6(BAC)-GFP and CellTrace injected (FlashTag) brain tissue were
sorted on a Sony SY3200 sorter with a 100-pum nozzle. Cells were sorted in bulk for
experiments using Drop-seq and the 10x Genomics platform, whereas for experi-
ments using plate based scRNA-seq methods, single cells were sorted into 96-well
plates and immediately frozen on dry ice.

Single-cell RNA sequencing and library preparation. Drop-seq was run on single
cells according to the Online Dropseq Protocol v.3.1 (December 2015) and the
methods published in ref. 9. Drop-seq flow rates (oil: 6,000 il h ™!, cells: 2,000 h ™,
beads: 2,000 1l h™!) were optimized based on human-mouse species mixing
experiments with a 1-2% doublet rate. Libraries were prepared with the Nextera
XT DNA Library Preparation Kit according to the manufacturer’s instructions.
For experiments using the 10x Genomics platform, the Chromium Single Cell
3’ Library & Gel Bead Kit v2 (PN- 120237), Chromium Single Cell 3’ Chip
kit v2 (PN-120236) and Chromium i7 Multiplex Kit (PN-120262) were used
according to the manufacturer’s instructions in the Chromium Single Cell
3’ Reagents Kits V2 User Guide.

For single cells sorted into 96-well plates, cells were immediately lysed and mRNAs

were released when single cells were sorted into wells with 5x Maxima reverse tran-
scription buffer, ANTP mixture, RNase inhibitors (SUPERase In RNase Inhibitor,
Thermo Fisher Scientific #AM2696) and water. We reverse-transcribed the mRNAs
using Superscript IT Reverse Transcriptase (Thermo Fisher Scientific #18064071),
and amplified cDNAs for each cell in individual wells using the Smart-seq2 (ref. 34)
protocol, with a custom modification in which a 12-base cell barcode was included
in the 3/-end reverse transcriptase primer. This enabled us to perform multiplexed
pooling before library preparation with the Nextera XT DNA sample prep kit
(Mlumina), and returned 3’ biased data similar to the Drop-seq protocol. We quantified
the cDNA libraries on an Agilent BioAnalyzer and sequenced them on a HiSeq 2500.
FlashTag. Immediately before use, 10 mM CFSE (Life Technologies, #C34554)
CellTrace solution was prepared according to the manufacturer’s instructions, and
2-3pl was injected into the lateral ventricle of E12.5 or E13.5 wild-type mouse
embryos. Embryos were collected 3, 6, 12 and 24 h post-injection.
Fluorescent in situ hybridization. Fluorescent in situ hybridization (ISH)
for nestin (Nes) and cyclin D2 (Ccnd2) transcripts (Fig. 2d) was performed
as previously described®®. Antisense cRNA probes were prepared by T7
polymerase in vitro transcription of PCR product templates generated using
the following primers: Nestin, 5'-AGCAGTGCCTGGAAGTGGAAG-3' and
5'-GCACATTAATACGACTCACTATAGGGCTGGATCCCCTCAGCTTGG-3/;
Cyclin D2, 5-ACCTCCCGCAGTGTTCCTA-3" and 5'-AATTAATACGACTC
ACTATAGGCTGCTCTTGACGGAACTGCT-3'
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Immunohistochemistry. Lhx8 fate-mapping. To fate-map Lhx8-lineage neurons,
Lhx8-cre/cerulean mice were crossed with Ai9 mice. Offspring with both alleles
were then transcardially perfused with PBS followed by 4% paraformaldehyde
(PFA) in PBS at postnatal day 21. The brains were collected, fixed overnight in 4%
PFA at 4°C, embedded in 4% agarose, and sectioned at 50 um on a Leica VT1200S
vibratome before proceeding with immunohistochemistry. Lhx8-cre/cerulean;Ai9
brain sections were blocked for 1h in 10% normal donkey serum, 0.3% Triton-X.
Sections were incubated at 4 °C overnight in the following primary antibodies: goat
anti-ChAT (1:250, Millipore AB144P), goat anti-Pvalb (1:1000, Swant PVG213),
rabbit anti-SST (1:3000, Peninsula Labs T-4102), rabbit anti-GABA (1:2000, Sigma
A2052), chicken anti-GFP (Aves Labs 1020), rabbit anti-DsRed (Clontech 632496).
Following several washes in PBS, sections were incubated at room temperature for
1h in the following secondary antibodies: Alexa Fluor 488-donkey anti-chicken,
Alexa Fluor 594-donkey anti-rabbit, and Alexa Fluor 647-donkey anti-goat and
rabbit (all Jackson Immunoresearch). Sections were then washed again several
times in PBS, treated with DAPI as a counterstain, and mounted on slides. Sections
were imaged using a Zeiss Axioimager A2 and processed in Image].

Mef2c conditional inactivation. We conditionally inactivated Mef2c by crossing
the Mef2¢™/ allele with either a Dix6a-cre or Dlx5/6-cre driver line. As the recom-
bination mediated by these two driver lines is indistinguishable, they are used
interchangeably in Fig. 4f, g, respectively. This results in the deletion of Mef2c in all
cortical interneurons during embryogenesis, shortly after they become postmitotic.
We took advantage of the RCE?* reporter line, which upon Cre-mediated recom-
bination enables the expression of GFP.

Density of cortical-interneuron subtypes in Mef2c conditional mutants. Brains
from DIx5/6-cre;Mef2c'*"*"PRCE mice were fixed by transcardial perfusion with 4%
PFA in PBS followed by a 1-h post-fixation period on ice with 4% PFA/PBS solution.
Brains were rinsed with PBS and cryoprotected using 15% sucrose/PBS solution
for 6h and 30% sucrose/PBS solution overnight at 4°C. Tissues were embedded
in Tissue-Tek, frozen on dry ice, and cryosectioned at thicknesses of 20 pm.
Sections for immunohistochemistry analysis were processed using 1.5% normal
goat serum and 0.1% Triton X-100 in all procedures except for washing steps,
in which only PBS was used. Sections were blocked for 1h, followed by incu-
bation with the primary antibodies overnight at 4°C. Cryostat tissue sections
were stained with the primary antibodies rat anti-SST (1:250, Chemicon), mouse
anti-Pvalb (1:1,000, Sigma), and rabbit anti-VIP (1:250, ImmunoStar), rabbit
anti-Neuropeptide Y (1:500; Incstar), mouse anti-Calretinin (1:1,500; Chemicon).
Secondary antibodies conjugated with Alexa fluorescent dyes were applied for
1h at room temperature to visualize the signals. Nuclear counterstaining was
performed with DAPI solution. All analysis was evaluated in the somatosensory
cortex. Density quantification for cortical-interneuron subtypes was calculated as
number of (peptide marker) + expressing cortical interneurons/area in the P21
control and Mef2c cortical knockout somatosensory cortex. To minimize counting
bias, we compared sections of equivalent bregma positions, defined according to
the Mouse Brain Atlas®®. The total number of cells expressing the marker were
counted for a defined and normalized optical area. Three brains each were used
for knockout and control.

Layer distribution of Pvalb-expressing cortical interneurons in Mef2c condi-
tional mutants. Tissue from conditional Mef2c mutants (Dlx6a*;Mef2¢™") and
controls (DIx6a“"*;Mef2d"*) were analysed at P20-P21. Adult mice were transcar-
dially perfused with 4% PFA after being anaesthetized by intraperitoneal adminis-
tration of Sleepaway. Brains that were processed for immunofluorescence on slides
were post fixed in 4% PFA in PBS at 4°C and cryopreserved following the perfusion
and brain collection. 16-pm coronal sections were obtained using Cryostat (Leica
Biosystems) and collected on super-frost coated slides, then allowed to dry and
stored at —20 °C until use. For immunofluorescence, cryosections were thawed and
allowed to dry for 5-10 min and rinsed twice in 1x PBS. They were incubated at
room temperature in a blocking solution of PBST (PBS, 0.1% Triton X-100) and
10% normal donkey serum (NDS) for 60 min, followed by incubation with primary
antibodies in PBST and 1% NDS at 4 °C overnight. Primary antibodies are as
follows: anti-GFP chicken polyclonal IgY (1:1,000) (Abcam Ab13970), anti-
parvalbumin (Pvalb) goat (Swant PVG 213) and anti-parvalbumin (Pvalb) rabbit
(Swant PV25). Samples were then washed three times with PBST and incubated
with fluorescence conjugated secondary Alexa antibodies (Life Technologies) in
PBST with 1% NDS at room temperature for 60-90 min. Slides were then incubated
for 30s with DAPI, washed three times with PBST and once with PBS. Finally, slides
were mounted with Fluoromount G (Southern Biotech) and imaged. To quantify
the layer distribution and density of various populations of cortical interneurons,
the proportion of interneurons of given subtypes over the total number of fate-
mapped interneurons across cortical layers was manually determined in Image].
Percentages presented in Fig. 4 were calculated by dividing the number of marker-
positive neurons in each layer (for example, layer I, layer II/II, layer IV and layer V/VT)
by the total number of reporter-positive neurons. Percentages were compared with
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repeated ¢-tests in GraphPad Prism, and means = s.d. are represented. Three brains
each were used for knockout and control, 34 sections per brain. See Extended
Data Fig. 10a.
Single-cell RNA-seq data processing. The raw Drop-seq data was processed with
the standard pipeline (Drop-seq tools version 1.12 from McCarroll laboratory).
Reads were aligned to the ENSEMBL release 84 Mus musculus genome. 10x
Genomics data was processed using the same pipeline as for Drop-seq data,
adjusting the barcode locations accordingly.
Data filtration. We selected cells for downstream processing in each Drop-seq
run, using the quality control metrics output by the Drop-seq tools package’, as
well as metrics derived from the UMI matrix. 1) We first removed cells with a low
number (<700) of unique detected genes. From the remaining cells, we filtered
additional outliers. 2) We removed cells for which the overall alignment rate was
less than the mean minus three standard deviations. 3) We removed cells for which
the total number of reads (after log;, transformation) was not within three standard
deviations of the mean. 4) We removed cells for which the total number of unique
molecules (UMISs, after log;, transformation) was not within three standard devi-
ations of the mean. 5) We removed cells for which the transcriptomic alignment
rate (defined by PCT_USABLE_BASES) was not within three standard deviations
of the mean. 6) We removed cells that showed an unusually high or low number of
UMIs given their number of reads by fitting a loess curve (span=0.5, degree =2)
to the number of UMIs with number of reads as predictor (both after log;, trans-
formation). Cells with a residual more than three standard deviations away from
the mean were removed. 7) With the same criteria, we removed cells that showed
an unusually high or low number of genes given their number of UMIs. Of these
filter steps, step 1 removed the majority of cells. Steps 2 to 7 removed only a small
number of additional cells from each eminence (2% to 4%), and these cells did not
exhibit unique or biologically informative patterns of gene expression.
Data normalization. The raw data per Drop-seq run is a UMI count matrix with
genes as rows and cells as columns. The values represent the number of UMISs that
were detected. The aim of normalization is to make these numbers comparable
between cells by removing the effect of sequencing depth and biological sources of
heterogeneity that may confound the signal of interest, in our case cell cycle stage.
A common approach to correct for sequencing depth is to create a new normali-
¢i,j % 10,000
2=

zed expression matrix x with x; j=log , in which ¢;; is the molecule

count of gene i in cell j and m; is the sum of all molecule counts for cell j. This
approach assumes that ¢;; increases linearly with m;, which is true only when the
set of genes detected in each cell is roughly the same. However, for Drop-seq, in
which the number of UMIs is low per cell compared to the number of genes
present, the set of genes detected per cell can be quite different. Hence, we
normalize the expression of each gene separately by modelling the UMI counts as
coming from a generalized linear model with negative binomial distribution, the
mean of which can be dependent on technical factors related to sequencing depth.
Specifically, for every gene we model the expected value of UMI counts as a func-
tion of the total number of reads assigned to that cell, and the number of UMISs per
detected gene (sum of UMI divided by number of unique detected genes). To solve
the regression problem, we use a generalized linear model (glm function of base
R package) with a regularized overdispersion parameter theta. Regularizing theta
helps us to avoid overfitting which could occur for genes whose variability is mostly
driven by biological processes rather than sampling noise and dropout events. To
learn a regularized theta for every gene, we perform the following procedure.

1) For every gene, obtain an empirical theta using the maximum likelihood
model (theta.ml function of the MASS R package) and the estimated mean vector
that is obtained by a generalized linear model with Poisson error distribution.

2) Fit a line (loess, span = 0.33, degree = 2) through the variance-mean
UMI count relationship (both log; transformed) and predict regularized theta
using the fit. The relationship between variance and theta and mean is given by
variance =mean + (meanz/theta).

Normalized expression is then defined as the Pearson residual of the regression
model, which can be interpreted as the number of standard deviations by which
an observed UMI count was higher or lower than its expected value. Unless stated
otherwise, we clip expression to the range [—30, 30] to prevent outliers from
dominating downstream analyses.

Removal of cell cycle effect. The normalization method described above aims to
reduce the effect of technical factors in scRNA-seq data (primarily, depth) from
downstream analyses. However, heterogeneity in cell cycle stage, particularly among
mitotic cells transitioning between S and G2/M phases, also can drive substantial
transcriptomic variation that can mask biological signal. To mitigate this effect, we
use a two-step approach: 1) quantify cell cycle stage for each cell using supervised
analyses with known stage-specific markers, 2) regress the effect of cell cycle stage
using the same negative binomial regression as outlined above. For the first step we
use a previously published list of cell cycle dependent genes (43 S phase genes, 54

G2/M phase genes) for an enrichment analysis similar to that proposed in ref. 11.
For each cell, we compare the sum of phase-specific gene expression (log; trans-
formed UMIS) to the distribution of 100 random background genes sets, where the
number of background genes is identical to the phase gene set, and the background
genes are drawn from the same expression bins. Expression bins are defined by
50 non-overlapping windows of the same range based on log;o(mean UMI). The
phase-specific enrichment score is the expression z-score relative to the mean and
standard deviation of the background gene sets. Our final ‘cell cycle score’ (Extended
Data Fig. 1) is the difference between S-phase score and G2/M-phase score.

For a final normalized dataset with cell cycle effect removed, we perform
negative binomial regression with technical factors and cell cycle score as
predictors. Although the cell cycle activity was regressed out of the data for down-
stream analysis, we stored the computed cell cycle score before regression, enabling
us to remember the mitotic phase of each individual cell. Notably, our regression
strategy is tailored to mitigate the effect of transcriptional heterogeneity within
mitotic cells in different phases, and should not affect global differences between
mitotic and non-mitotic cells that may be biologically relevant.

Dimensionality reduction. Throughout the manuscript we use diffusion maps,
a non-linear dimensionality reduction technique®’. We calculate a cell-to-cell
distance matrix using 1 — Pearson correlation and use the diffuse function of the
diffusionMap R package with default parameters to obtain the first 50 DMCs. To
determine the significant DMCs, we look at the reduction of eigenvalues associated
with DMCs. We determine all dimensions with an eigenvalue of at least 4% relative
to the sum of the first 50 eigenvalues as significant, and scale all dimensions to have
mean 0 and standard deviation of 1.

Initial clustering of all cells. To identify contaminating cell populations and assess
overall heterogeneity in the data, we clustered all single cells. We first combined all
Drop-seq samples and normalized the data (21,566 cells, 10,791 protein-coding
genes detected in at least 3 cells and mean UMI at least 0.005) using regularized
negative binomial regression as outlined above (correcting for sequencing depth
related factors and cell cycle). We identified 731 highly variable genes; that is, genes
for which the z-scored standard deviation was at least 1. We used the variable genes
to perform dimensionality reduction using diffusion maps as outlined above (with
relative eigenvalue cutoff of 2%), which returned 10 significant dimensions. For
clustering we used a modularity optimization algorithm that finds community
structure in the data with Jaccard similarities (neighbourhood size 9, Euclidean
distance in diffusion map coordinates) as edge weights between cells*®. With the
goal of overclustering the data to identify rare populations, the small neighbour-
hood size resulted in 15 clusters, of which two were clearly separated from the rest
and expressed marker genes expected from contaminating cells (Neurod6 from
excitatory neurons, Igfbp7 from epithelial cells). These cells represent rare cellular
contaminants in the original sample (2.6% and 1%), and were excluded from
further analysis, leaving 20,788 cells.

Identifying a maturation trajectory. To assign each cell a maturation score that
is proportional to the developmental progress, we first performed dimensionality
reduction as described above using all genes that were detected in at least 2% of
the cells (8,014 genes). This resulted in four significant dimensions. We then fit
a principal curve (R package princurve, smoother = lowess, f=1/3) through the
data. The maturation score of a cell is then the arc-length from the beginning of the
curve to the point at which the cell projects onto the curve. The resulting curve is
directionless, so we assign the ‘beginning’ of the curve so that the expression of Nes
is negatively correlated with maturation. Nes is a known ventricular zone marker
and therefore should only be highly expressed early in the trajectory. Maturation
scores are normalized to the interval [0, 1]. In an independent analysis, we also used
Monocle2 to order cells along a pseudo-time. We used Monocle version 2.3.6 with
expression response variable set to negative binomial. We estimated size factors
and dispersion using the default functions. For ordering cells, we reduced the
set of genes based on results of the monocle dispersion Table function, and only
considered 718 genes with mean expression >0.01 and an empirical dispersion at
least twice as large as the fitted dispersion. Dimensionality reduction was carried
out using the default method (DDRTree).

Defining mitotic and post mitotic populations. We observed a sharp transition
point along the maturation trajectory at which cells uniformly transitioned into
a postmitotic state, corresponding to the loss of proliferation potential and exit
from the cell cycle (Fig. 1f, Extended Data Fig. 1). We therefore subdivided the
maturation trajectory into a mitotic and postmitotic phase to facilitate downstream
analyses. We defined cells with a high phase-specific enrichment score (score
>2, see section ‘Removal of cell cycle effect’) as being in the S or the G2/M phase.
We then fitted a smooth curve (loess, span =0.33, degree =2) to number of cells in
S, G2/M phases as a function of maturation score. The point where this curve falls
below half the global average marks the dividing threshold (Fig. 1f).

Smoothed expression for visualization. Although all statistical analyses (differential
expression, branch detection, etc.) were performed on single-cell data (UMI counts or
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normalized expression), we created smoothed expression estimates for visualization
in Fig. 2b, ¢, and generated these by first fitting a loess curve (span=0.5, degree =2)
to the normalized expression of each gene with maturation score as predictor. We
then predicted values at 100 points at regular intervals from 0 to 1.

Identifying developmentally regulated genes. To identify genes that are develop-
mentally regulated during the mitotic phase, we used mutual information between
expression and maturation score.

We selected all cells that we determined to be mitotic (as defined above, Fig. 1f,
Extended Data Fig. 1) but ignored the 1% of cells with the lowest maturation score
to be more robust against outliers. We discretized maturation scores by placing
each cell into one of 13 equal sized bins, and did the same for the expression of
each gene. We then calculated mutual information between each gene and the
maturation score. We also calculated a random background mutual information
(rbMI) distribution for each gene using shuffled maturation scores. These rbMI
values allowed us to z-score the mutual information values by subtracting the mean
of rbMI and then dividing by the standard deviation of rbMI. We determined 1,294
genes to be highly developmentally regulated (z-score > 20).

We call 840 of these genes highly conserved, because all eminence-specific

expression fits have a Pearson correlation >0.9 with the fitted values obtained
using the combined data (Fig. 2b).
Differential expression. We wanted to identify genes that were differentially
expressed in the early mitotic cells between the eminences (Fig. 2a, Supplementary
Table 3), and also between cells assigned to different branches (Fig. 3e,
Supplementary Table 4). As has previously been observed®, expression values in
scRNA-seq are overdispersed, and we model expression values as drawn from a
negative binomial distribution. Concordant with our model for data normalization,
our test is based on the same negative binomial regression model with regularized
overdispersion parameter. For a gene i and its vector of UMI counts ¢; and a group
indicator variable g, we fit the two models:

Model 1:log(E(c))) = a+ Byr + Bym+ Byc + €

Model 2:1og(E(c))) = o+ Byr + Bym + Byc + Byg + €

with the technical factors r, the total number of reads per cell, and m, the average
number of molecules per gene per cell, and the biological factor c, the cell cycle
score. The overdispersion parameter theta is determined using model 1 and used
for both models. The comparison of the two models using a likelihood ratio test
determines the P value of model 2 providing a better fit. The log-fold change is
directly given by the coefficient of the group indicator variable as log,, (¢%4) . We
called genes differentially expressed if the adjusted P value (false discovery rate,
FDR) is smaller than 10~* and the absolute fold change is larger than 1.

Branch analysis. To check for emerging heterogeneity in the cells, we focused
on the postmitotic cells and performed a trajectory analysis that allows for
branching, that is, one population of cells may give rise to multiple precursors.
Minimum spanning trees (MSTs) have been used previously to identify putative
branching structures in developing populations'®’. However, spurious edges in
the MST or similar graph structures, previously referred to as short circuits, can
introduce stochasticity into these analyses. To overcome this problem, we applied
a bootstrapped approach using an ensemble of graphs, an approach inspired by
the Wanderlust algorithm*!, which also constructs an ensemble of graphs to gain
robustness to short circuits. We repeatedly constructed MSTs based on subsam-
ples of the data, and combined their results to obtain a new cell-to-cell distance
matrix and final tree structure that connects all cells. Branches are determined by
traversing the final tree and identifying major splits.

We performed this analysis separately for each eminence, and input were
the expression data of cells that we considered postmitotic based on maturation
score and cell cycle score (1,992 CGE cells, 1,750 LGE cells, 1,271 MGE cells). For
the analysis, we normalized the expression data as described above, regressing out
the following factors: number of reads, molecules per gene, sample and cell cycle
score. We considered all genes that were detected in at least 2% of the cells and that
were highly variable, that is, had a z-scored standard deviation larger than 1 (997
genes in CGE, 954 in LGE, 1,017 in MGE). We carried out dimensionality reduc-
tion as outlined above. We performed multiple runs of constructing an MST using a
random set of 66% of all cells each time. The process was repeated until each pair of
cells has been sampled at least 30 times (number of bootstraps for CGE, LGE, MGE:
91, 89, 89). We combined the MSTs by averaging the cell-to-cell distances along the
tree structures, followed by MDS to two dimensions. In theory, the MDS was not
necessary, but in practice we observed a more robust final consensus MST on the
MDS coordinates than on the averaged cell-to-cell distances. The consensus MST
is given directionality by choosing a cell with a low maturation score as the root.
Instead of using the cell with the lowest maturation score, an approach that can
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be sensitive to outliers, we chose the cell that maximizes the correlation between
maturation score and distance from the root for all cells.

To determine significant branches, we traversed the tree starting from the root.

Any cell that has outgoing edges to two or more cells is a potential branch point.
However, we considered branches significant only when the number of cells in
the branch was at least 8% of all cells in the MST. We marked only cells that are
connected to two or more significant branches as branch points. Only terminal
branches, that is, tree segments not containing branch points, are considered for
further analysis.
Mapping E14.5 fate-mapped 10 X scRNA-seq data to branches. Lhx6-GFP mice
were crossed with wild-type Swiss Webster females. At E14.5, the MGE and CGE
were each dissected from transgenic embryos and dissociated into a single-cell
suspension. FACS sorting was used to collect GFP-positive cells from the MGE
and GFP-negative cells from the CGE. Single-cell libraries were prepared using the
10x Genomics pipeline. A total of 12,513 cells passed our initial filtering (5,998
Lhx6-negative and 6,515 Lhx6-positive cells).

Since Lhx6 is expressed in postmitotic precursors, the Lhx6-positive sample
from the MGE dissection should contain only postmitotic MGE precursors.
However, the Lhx6-negative sample derived from the CGE will contain both
mitotic progenitors and postmitotic precursors, as well as a minority of cells
expressing Lhx6 mRNA, probably owing to errors during FACS sorting or a time
delay in GFP translation. To remove mitotic progenitors from the Lhx6-negative
CGE dataset, we performed a maturation trajectory analysis as outlined above,
and kept only postmitotic cells (2,905 cells, Extended Data Fig. 4h—j). To conserv-
atively remove potential MGE cells from the same dataset, we clustered the data
(as described in ‘Initial clustering of all cells’) and removed all cells belonging to
clusters with an Lhx6 detection rate of more than 20%. This step removed 465 cells,
leaving 2,440 Lhx6-negative postmitotic cells (Extended Data Fig. 4k).

To determine the branch identity of these cells, we mapped them to the E13.5
Drop-seq branches using a correlation-based approach. We focused on 279 genes
that were differentially expressed in one branch compared to the other two. For
these genes, we averaged the normalized expression in all branches (three branches
in each eminence) to create branch model vectors. We then calculated Pearson
correlations between all individual cells that we wanted to map and the model
vectors (CGE model vectors for the Lhx6-negative sample, MGE model vectors
for the Lhx6-positive sample). We assigned each cell to the branch with the highest
correlation, but also calculated empirical P values to determine the significance of
the assignment by permuting the single-cell data for a random background. We
left the model vectors unchanged, but permuted the single-cell expression data
100 times. For each permutation and each cell we kept track of the largest Pearson
correlation to the model vectors, and calculated a P value for the branch assignment
by counting what fraction of correlation scores was larger than the one used for the
branch assignment. In a final step, we turned all P values into FDRs and mapped
only cells with an FDR <0.1 to the branches (Extended Data Fig. 41-n).
Mapping E18.5 cortex and subcortex cells to branches. To fate-map Dix6a-
lineage neurons, Dlx6a-cre mice were crossed with either Ai9 or RCE®* mice.
Cortical and subcortical brain regions were dissected and collected from transgenic
embryos at E18.5 and postnatal day (P) 10, dissociated into a single-cell suspension,
and cells were collected with FACS based on their fluorescence expression. Single-
cell libraries were prepared using the 10x Genomics pipeline. To identify the poten-
tial branch of origin of E18.5 cortical (8,382 cells) and subcortical (8,237) neurons,
we mapped the cells of the E18.5 samples to the branches using the same approach
as for the E13.5 cells. We identified 774 differentially expressed genes between the
branches in the E13.5 10x data and used the average across cells as branch model
vectors (separately for CGE and MGE derived cells). We then used the same proce-
dure as for the E13.5 cells to map to the branches, allowing each E18.5 cell to map
to any of the six E13.5 branches (3 CGE branches, 3 MGE branches), and applying
the 0.1 FDR cutoff. Detailed results are shown in Extended Data Fig. 5 and Fig. 3i.
Relative variance explained. To quantify the contribution of different factors
to the overall heterogeneity in our data, we compared the amount of variance
of individual factors to the variance explained by the first principal component.
Given an expression matrix (normalized using negative binomial regression as
described above, regressing out number of reads and average number of molecules
per detected gene), we first selected the most variable genes (z-scored standard
deviation >1). To quantify the variance associated with an annotated factor of
interest, we first constructed a vector representing the annotation of each cell.
For a continuous factor of interest (for example, cell cycle score), we centred the
vector and length-normalized it to length 1. We then projected the expression data
onto this vector, and calculated the variance of the projected dataset. For a discrete
factor (for example, branch), we first turned the vector into a set of indicator varia-
bles, and applied principal component analysis to obtain independent continuous
vectors. We then projected the dataset onto each of these vectors, calculated the
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variance of the projected dataset and took the sum over all vectors. This enabled
us to compare the variance explained between different annotated factors (for
example, cell cycle and maturation score). For visualization and interpretation in
Figs. 2e and 3k, we normalized these values by the variance explained by the first
principal component of the dataset.

Smart-seq2 data processing. Reads were aligned using the same pipeline as for
the Drop-seq data. We kept only cells with at least 2,000 unique genes detected.
We further removed cells with a z-scored alignment rate <—3, or with an absolute
z-scored number of reads (after log;o tranformation) >3. This resulted in 1,099

cells in the Flashtag experiments, and 400 cells in the DIx6a-negative experiments.
¢ij 1,000

Expression data were normalized to x with x; ; = log, , + 1) inwhich

o
c;jis the read count of gene i in cell j and ; is the sum of all mépped reads for cell
j. Cell cycle score was calculated as described above, and regressed out using a
linear model including an intercept term. We used the residuals for all further
analyses. For dimensionality reduction we used diffusion maps on all genes that
were detected in at least 5% of the cells (approximately 10,000 genes). All further
analysis was carried out as for the Drop-seq data.

Integration of developmental and adult datasets. We used genetic fate-mapping
strategies in combination with the 10x Genomics Chromium system for scRNA-seq
to study cortical interneuron development at embryonic (E13.5, E18.5), postnatal
(P10) and adult (P56) stages. Specifically, we used the Lhx6-GFP transgenic mouse
line to select for postmitotic MGE cells and to precisely discriminate MGE versus
CGE precursor cells at E14.5 (Extended Data Fig. 4). For later stages, in which
cells have migrated out of the ganglionic eminences, we used a DIx6a-cre; RCE"
pan-ganglionic-eminence fate-mapping strategy to collect cortical interneurons at
E18.5 and P10 (Extended Data Fig. 5) and used the publicly available Allen Brain
Institute scRNA-seq dataset? (Allen Cell Types Database; http://celltypes.brain-
map.org/rnaseq) for the adult time point.

We applied our recently developed integration tool for scRNA-seq datasets®, to
identify shared sources of variation between embryonic (E13.5, E18.5), postnatal
(P10) and adult (P56) datasets.

For the P56 dataset, we downloaded FPKM expression values for 8,432 single
cells from the mouse visual cortex, sequenced with the Smart-Seq2 protocol, from
a publicly available resource at the Allen Brain Atlas (Allen Cell Types Database;
http://celltypes.brain-map.org/rnaseq). We selected 3,432 GABAergic cells for
downstream analysis based on an initial clustering analysis and a selection of Gad1-
positive clusters (Extended Data Fig. 6). For E18.5 and P10 datasets, we performed
a similar initial clustering, removing populations of microglia, astrocytes, oligo-
dendrocytes and smooth muscle cells that probably represent FACS false-positives
and are unlikely to give rise to cortical interneurons (Extended Data Fig. 5). For
the E13.5 and E14.5 dataset, we took all cells from our Lhx6-positive and Lhx6-
negative datasets that were assigned to the interneuron precursor state (branch 1).

We performed three separate pairwise analyses, aligning E13.5 and P56, E18.5
and P56, and P10 and P56 datasets. In each case, we applied the Seurat alignment
procedure as previously described®. We first detected variable genes in each dataset
independently, using the FindVariableGenes function with default parameters. We
used the union of the two variable gene sets used as input to canonical correlation
analysis, and aligned the resulting canonical correlation vectors (CCV) across
datasets with the AlignSubspace function. In brief, AlignSubspace constructs
‘metagenes’ representing the average expression of genes exhibiting robust cor-
relations to the CCV in both datasets, and applies nonlinear ‘warping’ algorithms
to align these metagenes between datasets. We performed this analysis for each
of the top 15 CCV independently, and used biweight midcorrelation (bicor), a
median-based similarity metric implemented in the WGCNA R package*?. For
downstream analysis (¢-distributed stochastic neighbour embedding (¢-SNE)
and subtype mapping), we selected CCV for which at least 30 genes exhibited a
minimum bicor of 0.15 in both datasets, applying the same cutoff across all three
analyses.

For visualization (Fig. 4b), we constructed a distance matrix from these selected
components as input to tSNE with default parameters. We next assigned cells
from developmental datasets to adult subtypes, performing the following analysis

separately for each of the three pairwise comparisons. For each cell in the develop-
mental dataset, we calculated the k=10 closet neighbours in the P56 dataset, using
the selected CCV for the input distance matrix. If at least 9 of these neighbours in
the P56 dataset were of the same subtype, the developmental cell was assigned to
this subtype. We note that this represents a stringent threshold, which we apply
equally across all comparisons. As a secondary check, for each developmental
cell, we calculated the nearest k =10 neighbours across all cells in the merged
developmental and adult dataset. If none of these 10 neighbours represented cells
in the P56 dataset, we also considered the cell to be unassigned. We performed
this mapping procedure twice, to assign cells to the four main cardinal types
(Fig. 4b-d), and also to assign them to the 14 finer subtypes (Extended Data Fig. 9)

To identify differentially expressed genes that were conserved across
development, we used the FindConservedMarkers command in Seurat, which runs
differential expression tests separately on both developmental and adult datasets.
We required genes to have a 1.25-fold change, with a Bonferroni-corrected P value
threshold of 0.05 in both developmental and adult datasets to be considered a
conserved marker. Figure 4e and Extended Data Fig. 7 lists these genes, in order
of when they first become annotated as differentially expressed.

Lastly, we explored whether our early transcriptomic markers of cardinal type
separation in the mouse were also differentially expressed in human adult neurons.
We used data from a recently published dataset of 14,963 single human nuclei from
post-mortem tissue®®. We performed standard log-normalization in Seurat, and
calculated the average expression level of nuclei that were annotated as belonging
to Pvalb, Sst, Id2, and Vip types. We used these values for the scatter plots in
Extended Data Fig. 10.

Code availability. Code for preprocessing and analysis of scRNA-seq data are
available from the Center for Open Science at https://osf.io/xjmtr. The Seurat
package, which was used for the integration of developmental datasets, is open-
source and freely available on GitHub (https://github.com/satijalab/seurat) and
CRAN (https://cran.r-project.org/web/packages/Seurat/index.html).

Data availability. All source data, including sequencing reads and single-cell
expression matrices, are available from the Gene Expression Omnibus (GEO)
under accession code GSE104158.
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Extended Data Figure 1 | Ordering cells along a maturation trajectory.
a, Diffusion map analysis of eminence datasets suggests a pan-eminence
developmental continuum. Each eminence was analysed independently,
revealing nearly identical patterns. Cells are coloured according to the
expression of canonical regulators. b, Using principal component analysis
to reconstruct developmental maturation returns nearly identical results
to the diffusion map analysis in Fig. 1. Principal component analysis was
calculated for all eminences independently, and cells are coloured by their
expression of canonical markers. ¢, Eigenvalues for the two dimensionality
reduction methods. We observe a substantial eigenvalue drop-off after
the initial components, demonstrating that the majority of the variance

is captured in the first few dimensions. d, Single-cell heat map showing
scaled expression levels of top genes that were correlated with cell cycle
score. Cells on the x axis are sorted by cell cycle score. Negative scores
correspond to cells in S phase, positive scores correspond to cells in G2/M
phase. e, Scatter plot illustrating the relationship between maturation
score and cell cycle score for all cells in the dataset. Each dot corresponds

Maturation score

to a single cell. Early progenitors span a wide range of cell cycle states,
whereas late cells do not express G2/M or S-phase specific genes and
express postmitotic genes. f, Expression of canonical marker genes as

a function of ‘pseudotime, as calculated with Monocle2!. Monocle2
pseudotime was strongly correlated with our maturation trajectory (both
Pearson and Spearman R=0.94). g, h, Diffusion map (g) and maturation
trajectory (h) analysis of 1,099 single cells obtained from FlashTag
animals, and sequenced using a custom version of the Smart-seq2 protocol
(Supplementary Methods). Cells are coloured by their expression of
canonical markers, which exhibit dynamics that are concurrent with the
maturation trajectory learned from the Drop-seq data. i, j, Relationship
between the maturation trajectory and cell cycle scores derived from the
FlashTag datasets replicates our observations from Drop-seq. Therefore,
our FlashTag maturation trajectory serves as complementary validation of
our Drop-seq maturation trajectory, and exhibits strong association with
biological time.
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Extended Data Figure 2 | Enrichment of differentially expressed genes
in the MGE, CGE and LGE. a, Schematic of embryonic brain sections at
E13.5/E14.5. One sagittal section shows the MGE and LGE next to one
another (right), whereas the other shows the CGE (left). b, ISH images
from the Allen Brain Institute Developing Mouse Brain Atlas at E13.5

for genes that our analysis identified as being differentially expressed
between the eminences. For each gene, ISH images are shown for the
MGE, CGE and LGE. Image credit: Allen Institute. ¢, Temporal dynamics

for differentially expressed genes in early mitotic cells. Curves represent
local averaging of single-cell expression, as a function of progression
along the maturation trajectory, for each eminence independently. Grey
area indicates 95% confidence interval. Genes are selected from the
differentially expressed genes in early mitotic cells (Fig. 2a). d, Gene
expression dynamics in mitotic cells, based on local averaging of single-
cell data, plotted along maturation score for selected developmentally
regulated genes.
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Extended Data Figure 3 | Enrichment of dynamically expressed genes
in the ventricular zone, subventricular zone and mantle zone.

a, Schematic of an embryonic brain section at E13.5/E14.5. The locations
of the ventricular zone (VZ) and mantle zone (MZ) are indicated.

b, Sagittal ISH images from the Allen Brain Institute Developing Mouse
Brain Atlas at E13.5. Genes are ordered from lowest to highest maturation
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score rank. The trend overall shows that genes with peak expression at low
maturation score tend to have higher expression in the ventricular zone,
and as maturation score rank increases the expression pattern shifts to

the subventricular zone and then to the mantle zone. Image credit, Allen
Institute.
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Extended Data Figure 4 | Fate divergence occurs as cells become
postmitotic. a, Supervised analysis: PCA of full dataset, run using only
branch-dependent genes. Cells are grouped based on the maturation-
trajectory bin: the first five bins represent mitotic progenitors, the last
four bins represent postmitotic cells which are coloured by branch ID.
Mitotic cells fall within a homogeneous point cloud, with low variance on
principal components 1 and 2, showing no evidence of fate bifurcation.

b, To test whether our inability to detect fate bifurcations earlier in
development was due to the lower sequencing depth of Drop-seq, we
sequenced 400 DIx6a-cre;RCE*® negative ganglionic eminence cells
(thereby enriching for mitotic progenitors), using a modified Smart-

seq2 protocol. Diffusion map analysis of these cells returned only two
significant principal components, with no evidence of further structure.
These components reflect our previously defined maturation trajectory,
with DMCI separating mitotic cells (left). ¢, Rare mitotic cells expressing
canonical branch markers do not segregate on the diffusion plot.

d-f, Branching analysis on mitotic progenitors. We repeated the branch
analysis, previously computed on postmitotic cells (Fig. 3a), on mitotic
progenitors from all three ganglionic eminences. Although we did
observe computational evidence of branching, this does not represent
fate bifurcations as we observed in postmitotic cells. Instead, cells from
different branches could largely be separated into ‘early’, ‘intermediate’
and ‘late’ regions of mitotic pseudotime, with one branch being largely
defined by the expression of pro-neural cell cycle regulators (for example,
Ascll). As these genes peak at intermediate stages, our branching patterns
could reflect either the aberrant assignment of intermediate cells to a new
branch, or reflect the potential of multiple modes of cell division (namely,

ARTICLE

direct versus indirect neurogenesis) occurring in the ventricular zone
and subventricular zone. g, Genetic fate-mapping using Lhx8-cre/cerulean
demonstrates that MGE branch three precursors give rise to the entire
breadth of cholinergic projection (globus pallidus and nucleus basalis)
and interneuron (striatum) populations. The cumulative longitudinal
use of a constitutive Cre driver also results in extensive labelling of
cortical interneurons owing to transient expression within this
population. Scale bar, 500 pm. Ctx, cortex; Str, striatum; LS, lateral
septum; MS, medial septum; NP, nucleus basalis; GP, globus pallidus.

h, Our Lhx6-GFP-negative dataset contains both mitotic and postmitotic
cells from the CGE and diffusion map analysis shows our previously
defined maturation trajectory. i, j, To isolate postmitotic cells, we
calculated a maturation trajectory (i), and used the cell cycle scores to
identify the transition point between mitotic and postmitotic cells (j) as
with the eminence datasets in Fig. 1. k, To avoid the possibility of FACS
false-negative MGE cells contaminating our Lhx6-GFP-negative dataset,
we clustered the postmitotic cells from this dataset, and filtered out three
rare clusters where Lhx6 mRNA expression was detected in more than
20% of cells (Supplementary Methods). 1, m, We mapped postmitotic cells
from the Lhx6-GFP-positive (1) and Lhx6-GFP-negative (m) datasets

to the branches determined from the Drop-seq dataset (Supplementary
Methods). Heat maps show scaled single-cell expression markers
associated with each branch. n, Analogous to Fig. 3e, but also including
the Lhx6-GFP-positive and Lhx6-GFP-negative datasets generated using
10x Genomics, as a validation of the original Drop-seq datasets that were
performed on wild-type mice.
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Extended Data Figure 5 | Filtering of E18.5 and P10 10x datasets

and mapping of E18.5 cortex and subcortex neurons to E13.5/E14.5
branches. a, ¢, t-SNE visualization of Dix6a-cre;RCE"**? positive E18.5
cortical cells (a) and DIx6a-cre;RCE"**? positive P10 cortical cells (c).
Although the DIx6a-cre should mark only GABAergic eminence-derived
cells, we identified rare populations that did not express canonical
interneuron (IN) markers, probably representing false positives from
FACS. b, d, Gene expression in these populations (E18.5 cells b, P10
cells d; heat map shows average expression in group) identifies rare
contaminating populations of microglia (micro), astrocytes (astro),
oligodendrocyte precursor cells (OPCs) and oligodendrocytes (oligo);
smooth muscle cells (SMC), stem cells (SC), projection neurons (PN).
For all downstream analyses, we considered only cells in the interneuron
cluster. e, t-SNE visualization of 8,382 Dix6a-cre;RCE™" positive

E18.5 cortical cells (same dataset as in Extended Data Fig. 5a, but after
removing contaminating populations). Each E18.5 cell was mapped to
one of six precursor states (branch 1, 2, and 3 for Lhx6-GFP-positive and

ARTICLE

Lhx6-GFP-negative datasets), using a correlation-based distance metric
(Supplementary Methods). This enabled us to assign a putative eminence
and branch of origin for each of the E18.5 cortical cells. f, As expected,

the vast majority of Dix6a-cre;RCE'" positive E18.5 cortical cells map

to the interneuron precursor state, and are split between MGE and CGE-
derived precursors. By contrast, Dlx6a-cre;RCE™ positive E18.5 cells
from the subcortex primarily map to branches 2 and 3, consistent with
our interpretation of these branches as precursor states for projection
neurons; CX, cortex; SC, subcortex. g, h, The minority of Dlx6a-positive
cortical cells mapping to precursor states 2 and 3 primarily co-express
Meis2 (g) and Gadl1 (h), probably representing a CGE-derived GABAergic
population. These cells have been recently described as being present

in the cortical white matter and probably represent projection neuron
precursors®!. i, j, Heat maps showing single-cell expression markers for the
three different mapped branches of Dix6a-cre;RCE™*F positive E18.5 cells
from the cortex (i) and the subcortex (j).
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Extended Data Figure 6 | Clustering of adult visual cortical neurons
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a, Initial £-SNE visualization and graph-based clustering of 8,329 single
cells individually isolated from P56 mouse visual cortex and sequenced
with the Smart-Seq2 protocol. Data was downloaded from the publicly
available resource hosted by the Allen Brain Atlas®* (Allen Cell Types
Database, http://celltypes.brain-map.org/download (2015)). b, Of all cells,
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3,432 GABAergic interneurons were easily identified by the expression

of GadlI (left) and the absence of Slc17a7 (right), and were selected for
downstream analysis. ¢, t-SNE visualization and graph-based clustering of
the 3,432 GABAergic cells reveals 14 clusters. d, e, The clusters revealed

in ¢ could be broadly grouped into cardinal types based on the expression
of canonical markers. f, Single-cell heat map showing scaled expression
values for the best transcriptomic markers in each cluster.
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independent analysis of each dataset. Integrated analysis with the P56
dataset results in clearer separation, and enables us to map developmental
precursors to adult subtypes. b, Expression of Gadl and Meis2 in single-
cell datasets. Cells expressing both genes are probably projection neuron
precursors that have recently been described in the CGE?!, but whose
progeny is not captured in the mouse visual cortex dataset. Therefore,
these cells are correctly mapped as unassigned.
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Extended Data Figure 9 | Transcriptional segregation into cortical
interneuron subtypes at different developmental stages. a, t-SNE
visualization of all P10 cells mapping to a P56 subtype (as in right
column of Fig. 4c, but cells are coloured by subtype instead of cardinal
type). b, t-SNE visualization as in a, but zoomed in on each cardinal type
independently. ¢, Single-cell heat maps showing the best transcriptomic
markers marking each subtype, for the Sst (left), Vip (middle) and Id2

(right) cardinal types, within P10 cells. We did not observe any statistically

5
g

significant markers subdividing Pvalb subtypes. d, t-SNE visualization

of all E18.5 cells mapping to a P56 subtype (as in right column of

Fig. 4c, but cells are coloured by subtype instead of cardinal type). e, t--SNE
visualization as in d, but zoomed in on each cardinal type independently.
f, Single-cell heat maps showing the best transcriptomic markers marking
each subtype, for the Sst (left), Vip (middle) and Id2 (right) cardinal types,
within E18.5 cells. We did not observe any statistically significant markers

subdividing Pvalb subtypes.
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a reduction in Pvalb density in all cortical layers except for layer 1. Error
bars reflect s.e.m.; unpaired ¢-test; *P < 0.05, **P < 0.01, ***P < 0.001;
n=4 brains each for cortical knockout and control, 3-4 sections per
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brain. b-d, Scatter plot comparing average expression of 3,035 GABAergic
single nuclei from post-mortem human neurons, after segregation into
Pvalb and Sst (b), Vip and Id2 (c¢) and MGE and CGE inferred origins (d).
Each dot represents the expression of a gene in human cells. Markers of
transcriptomic cardinal types from our E13.5 and E18.5 datasets (from
Fig. 4e) are shown in red or blue dots. Mouse embryonic markers that also
differ by 1.5-fold in human have gene names annotated on the plot.
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» Experimental design

1. Sample size

Describe how sample size was determined. N/A
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2. Data exclusions

Describe any data exclusions. See manuscript page 2, paragraph 3:
The focus of our study was to investigate inhibitory interneuron development.
Therefore, when we identified small populations of excitatory neurons (Neurod6;
2.6% of cells) and endothelial cells (Igfbp7; 0.7% of cells) (Fig. 1B, C), both were
excluded from further analysis.

3. Replication
Describe whether the experimental findings were See manuscript page 2, Paragraph 3:
reliably reproduced. After cell dissociation, we utilized Drop-seq to sequence the transcriptomes of

5,622 single cells from the MGE, 7,401 from the CGE, and 8,543 from the LGE,
using three independent biological replicates for each eminence.

4. Randomization

Describe how samples/organisms/participants were N/A
allocated into experimental groups.

5. Blinding
Describe whether the investigators were blinded to N/A

group allocation during data collection and/or analysis.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.




6. Statistical parameters

For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the
Methods section if additional space is needed).

n/a | Confirmed

|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

|X| A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same
sample was measured repeatedly

g A statement indicating how many times each experiment was replicated

|X| The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more
complex techniques should be described in the Methods section)

|X| A description of any assumptions or corrections, such as an adjustment for multiple comparisons
|X| The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

|X| A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

oo o o d

|X| Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

» Software

Policy information about availability of computer code

7. Software
Describe the software used to analyze the data in this Combination of custom R scripts and existing R packages as outlined in the
study. supplemental methods section

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for
providing algorithms and software for publication provides further information on this topic.

» Materials and reagents

Policy information about availability of materials

8. Materials availability

Indicate whether there are restrictions on availability of ~ N/A
unique materials or if these materials are only available
for distribution by a for-profit company.

9. Antibodies

Describe the antibodies used and how they were validated = See Supplemental methods

for use in the system under study (i.e. assay and species).
Primary antibodies: goat anti-ChAT (1:250, Millipore AB144P), goat anti-Pvalb
(1:1000, Swant PVG213), rabbit anti-SST (1:3000, Peninsula Labs T-4102), rabbit
anti-GABA (1:2000, Sigma A2052), chicken anti-GFP (Aves Labs 1020), rabbit anti-
DsRed (Clontech 632496),Anti-GFP Chicken Polyclonal IgY (1:1000) (Abcam
Ab13970), Anti-Parvalbumin (Pvalb) Goat (Swant PVG 213) and Anti-Parvalbumin
(Pvalb) Rabbit (Swant PV25), rat anti-SST (1:250, Chemicon), mouse anti-Pvalb
(1:1000, Sigma), and rabbit anti-VIP (1:250, ImmunoStar), rabbit anti-Neuropeptide
Y (1:500; Incstar), mouse anti-Calretinin (1:1500; Chemicon).

Secondary antibodies: Alexa Fluor 488-donkey anti-chicken, Alexa Fluor 594-
donkey 5’-anti-rabbit, and Alexa Fluor 647-donkey anti-goat and rabbit (all Jackson
Immunoresearch), secondary Alexa antibodies (Life Technologies).
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10. Eukaryotic cell lines
a. State the source of each eukaryotic cell line used. N/A

b. Describe the method of cell line authentication used.  N/A

c. Report whether the cell lines were tested for N/A
mycoplasma contamination.

d. If any of the cell lines used are listed in the database N/A
of commonly misidentified cell lines maintained by
ICLAC, provide a scientific rationale for their use.

» Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals

Provide details on animals and/or animal-derived See supplementary methods, section “Animal Work”
materials used in the study.

Policy information about studies involving human research participants
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12. Description of human research participants

Describe the covariate-relevant population N/A
characteristics of the human research participants.
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