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In this review, we explore how contextual modulations of

sensory processing are implemented within the local cortical

circuit. We focus on contextual influences of global arousal

state (e.g. how alert am I?), sensory predictions (e.g. which

stimuli do I expect?), and top-down attention (what is relevant

to me?). We review recent literature suggesting that these

operations are implemented throughout sensory cortices, and

are mediated by excitatory and inhibitory local circuits. By

focusing on the circuit mechanisms of contextual modulation

operations, we may begin to understand how mutations in

GABAergic interneurons and alterations in neuromodulatory

signaling lead to specific deficits of information processing in

neuropsychiatric disease.
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Neuronal responses to sensory stimuli depend strongly on

the context. For instance, when we are driving a car, we

are alert to our surroundings, continuously predicting the

future trajectories of other cars, and selectively attending

to traffic signs and road conditions. By contrast, the

demands on our sensory systems are very different when

we are listening to music or reading a book. Arousal,

expectation and attention are a subset of the contextual
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‘knobs’ that modulate sensory processing according to

immediate task demands. Anatomically, contextual mod-

ulations of sensory processing can originate from cortical,

glutamatergic top-down feedback and lateral connec-

tions, or subcortical pathways (Figure 1). Subcortical

pathways include a variety of neuromodulatory systems

utilizing dopamine, norepinephrine, histamine, serotonin

and acetylcholine, which regulate global arousal [1,2].

Cortical and sub-cortical pathways converge onto

GABAergic circuits within cortex (Figure 1c) whereby

they modulate cortical dynamics and signaling.

Here, we discuss the mechanisms by which contextual

modulation provided by arousal state, sensory predictions

and top-down attention are implemented within the local

cortical circuit. Arousal state entails a global modulation

of neural activity and sensory encoding according to

behavioral context. Sensory prediction and top-down

attention are two principal types of contextual processing

occurring within cortex [3,4]: Predictive coding opera-

tions encompass the differential encoding of sensory

inputs depending on expectancies and priors (i.e. how

likely an input is), and the emergence of neurons that

encode unexpected sensory prediction errors [3]. Atten-

tion entails the modulation of neural activity depending

on internal goals (i.e. how relevant an input is). Expec-

tancy and attention may modulate neural activity in a

wide variety of ways, from being complementary to

opposing (Figure 1b).

GABAergic circuits underlying top-down
functions
In this section, we provide a coarse overview of the

properties of different GABAergic subtypes, emphasizing

the vasoactive intestinal peptide (VIP) and somatostatin

(SST) expressing interneuron classes, as these have

recently emerged as essential mediators of contextual

modulation. Cortical circuits consist of two main types

of neurons, glutamatergic principal cells (PCs) and

GABAergic inhibitory interneurons (INs), which together

regulate information flow into and throughout the local

network. GABAergic interneurons, which compose about

10–20% of cortical neurons in rodents, have different

intrinsic physiological properties, morphology, synaptic

targets, and molecular markers (for review see [5]). Cor-

tical interneurons are typically subdivided into three

distinct groups by using three non-overlapping markers:

1. Somatostatin (SST), 2. Serotonin receptor 3a
www.sciencedirect.com
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Contextual modulation of sensory processing. (a) Schematic representation of synaptic interactions between cortical and subcortical brain regions

involved in context-dependent sensory processing. Ascending sensory information is depicted as bottom-up, from subcortical ascending sensory

areas (gray) to sensory cortex (purple) to higher-order cortical areas (orange). Modulating this bottom-up processing stream are top-down

glutamatergic signals from higher to lower-ordered cortices (orange arrows), neuromodulatory signals from, for example, nucleus basalis

(cholinergic) and locus coeruleus (noradrenergic) (green arrows) and lateral connections within sensory cortices (purple recurrent arrow). (b)

Example of how top-down processing and arousal can mediate predictive coding. Visual scene information is conveyed through bottom-up

connections. A top-down prediction (orange arrow) is made about salient features of the image (cars passing each other). Any unexpected stimuli

(impending crash) would strongly propagate to higher areas. This prediction-error, in turn, would strongly activate attentional and arousal signals

(green arrow). (c) Basic elements of a neural circuit within sensory cortex. The local network is composed of pyramidal cells (PC in grey) and

inhibitory GABAergic interneurons (purple). This circuit receives feedforward inputs from lower sensory areas, feedback signals from higher areas

and neuromodulation from a variety of neuromodulatory centers. Feedforward inputs primarily target PCs and PV-INs, while glutamatergic top-

down feedback and neuromodulatory inputs primarily target VIP and SST-INs. Abbreviations: PV, parvalbumin; IN, interneuron; VIP, vasoactive

intestinal peptide; SST, somatostatin.
(5HT3aR), which includes VIP-expressing interneurons,

and 3. Parvalbumin (PV) (Figure 1c) [6].

1 SST-interneurons primarily target the dendritic com-

partments of principal cells. SST-interneurons receive

inhibitory inputs from VIP and PV-interneurons [7] and

distance-dependent excitatory inputs from PCs [7–10].

SST-interneurons receive little direct thalamic input as

compared to PV-interneurons, but instead are modu-

lated by recurrent excitatory activity, top-down signals

and neuromodulatory signals such as cholinergic and

noradrenergic inputs [5,11,12]. By contrast to PV-inter-

neurons, which generally suppress the output of a

neuron by targeting somata and proximal dendrites,

SST-interneurons can inhibit PCs with high specificity

by co-localizing with specific excitatory synapses on PC

dendrites [13]. SST-interneurons have the ability to

control active dendrite properties (i.e. calcium spikes or

plateau potentials), and thereby modulate the percep-

tual thresholds for sensory stimuli [14,15]. The two

main subclasses of SST-interneurons preferentially

synapse onto: (a) layer 4, which is the recipient layer

for thalamic inputs and (b) the apical tufts in layer 1

(Martinotti cells) [5], which is a prominent recipient of

top-down cortical feedback [16��,17,18]. The
www.sciencedirect.com 
facilitatory nature of principal cell-to-SST synapses,

that is, increased synaptic responses with repeated

stimulation, make these cells suited to integrate syn-

aptic inputs over a long time-windows [5]. Together,

these characteristics suggest that SST-interneurons

have essential roles in mediating and gating contextual

signals, as well as balancing recurrent excitatory activity

with feedback inhibition.

2 5HT3aR-expressing interneurons mostly reside in

superficial layers. These neurons express fast-acting

(ionotropic) serotonin and acetylcholine receptors, and

are direct recipients of top-down glutamatergic feed-

back [5]. 5HT3aR-interneurons can be further divided

into VIP-positive and VIP-negative interneurons [5]. In

the cortex VIP-interneurons inhibit not only PCs, but

also SST-interneurons. Consequently, VIP-interneu-

ron activity leads to disinhibition (VIP ! SST ! PC)

in a subset of PCs [7,19,20]. 5HT3aR-positive, VIP-

negative interneurons include (but are not restricted to)

neurogliaform cells, which reside mainly in layer

1. Layer 1 neurogliaform cells receive top-down feed-

back inputs and callosal inputs [21], target PCs and

interneurons, and form gap junctions with other inter-

neurons, through which they can exert powerful corti-

cal inhibition (for review see [22]).
Current Opinion in Neurobiology 2018, 52:172–181
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3 PV-interneurons are fast-spiking cells, meaning that

they can sustain high-frequency firing in response to

synaptic inputs, and preferentially target PC somata.

They receive strong feedforward inputs (e.g. thalamo-

cortical), and integrate local excitatory inputs with high

temporal precision, making them ideally suited to

balance feedforward excitatory inputs and stabilize

the local network. PV cells also receive direct top-down

projections and could play a role in several of the

operations discussed below (for review see [5]). How-

ever, they will not be the focus of this review, given

their primary function in network stabilization. This is

supported by observations that modulations of PV-

interneuron and PC activities are correlated, as

required for network stabilization, in contrast to anti-

correlated modulations between SST-interneurons and

PCs [8,23].

In the following, we focus on the role of VIP-interneurons

and SST-interneurons in mediating contextual influ-

ences. We note that although GABAergic circuits are

highly conserved across cortex and species, the reviewed

studies almost exclusively use genetic mouse models that

allow in vivo access to identified GABAergic subtypes.

Arousal state
The demands for neural processing capacity change dras-

tically from sleep to wakefulness and from quiet wake-

fulness to engagement [24]. Arousal states can be mea-

sured from ‘low’ to ‘high’ by the extent to which the

central nervous system is globally activated. Highly active

states are associated with strong cholinergic and norad-

renergic activation of cortical circuits mediated by the

basal forebrain and locus coeruleus, respectively [25�]. In

recent years there have been major efforts in understand-

ing how these high-arousal states influence sensory pro-

cessing [26]. In rodents, pupillometry shows that active

states like locomotion and whisking correspond to high-

arousal states (for review see [24]). An important caveat is

that many high-arousal states like locomotion can be

decomposed into arousal and motor components, which

can have distinct effects on neuronal activity patterns and

sensory encoding [27�]. In neocortex, high arousal states

are associated with the presence of fast beta or gamma

waves (the ‘desynchronized’ or ‘activated’ state), whereas

low arousal states are associated with synchronous fluc-

tuations in the alpha, theta and delta frequency range (the

‘synchronized’ state) [27�].

Recent studies have revealed essential cortical circuit

motifs responsible for translating neuromodulatory sig-

nals into changes in sensory processing. Notably, the

same cortical circuit elements that are targeted globally

during arousal also mediate top-down processing, yet at

much finer spatial and temporal scales. Essential motifs

that have emerged for arousal include:
Current Opinion in Neurobiology 2018, 52:172–181 
1) VIP–SST–PC disinhibition (Figure 2a). During highly

active states, like whisking and locomotion, VIP-inter-

neuron firing is strongly enhanced [19,28��,29] by

cholinergic activation [29]. VIP-interneurons strongly

inhibit SST-interneurons, particularly the Martinotti

cells which target layer 1 (L1) [7,16��], and weakly

inhibit PCs and PV-interneurons [7]. Consequently,

VIP activation results in disinhibition of the apical

dendrites of PCs [16��,23]. Such disinhibition may

enhance the impacts of top-down inputs

[16��,17,18], which enter cortex primarily via L1,

and promote permissive conditions for cortical plastic-

ity [30–33].

2) SST-mediated desynchronization. SST-interneurons are

directly stimulated by cholinergic and noradrenergic

inputs, and may be essential mediators of the changes

in temporal patterning of neuronal activity associated

with high arousal states (reduced low-frequency syn-

chronization, increased power of beta and gamma

waves) [34,35,36�] (Figure 2b). This may depend on

direct activation of nicotinergic and muscarinic recep-

tors expressed on SST cells and/or a potentiation of

PC-to-SST synapses through activation of pre-synap-

tic nAChRs [11].

3) SST-PV-PC disinhibition. In whisker somatosensory

cortex, SST-interneurons inhibit layer IV PV-inter-

neurons, thereby disinhibiting the propagation of tha-

lamic input signals and firing of L4 PCs [37]. Impor-

tantly, this effect is mediated by SST-interneurons

that do not have a Martinotti morphology and project

strongly to PV-interneurons [37].

4) PC gain modulation. Neuromodulators like acetylcho-

line and norepinephrine can directly boost PC input

resistance and synaptic activity, thereby boosting sen-

sory response gain and signal-to-noise ratio (i.e.

evoked vs. spontaneous activity) [38].

5) VIP-negative based disinhibition. Ongoing research

efforts are aimed at understanding the roles of L1

VIP-negative 5HT3aR-interneurons. Recent studies

suggest that they exert disinhibitory effects by target-

ing PV cells and are important for learning and plas-

ticity [17,39].

Since the active state is characterized by desynchroniza-

tion and strongly enhanced VIP-interneuron firing, it

appears there is a contradiction between the dependence

of desynchronization on SST-interneuron activation and

the VIP–SST–PC disinhibitory motif. This may be

explained by the heterogeneity in the SST-interneuron

population. During whisking, a vast majority of SST-

interneurons in superficial layers with Martinotti mor-

phology are inhibited by VIP-interneurons, whereas most

SST-interneurons in granular and infragranular layers are

strongly activated by acetylcholine, thereby overcoming

VIP-mediated inhibition [16��] (Figure 2d). Future work

is needed to determine the effects that these two sub-

groups of SST-interneurons have on desynchronization.
www.sciencedirect.com



Top-down and arousal influences on cortical circuits Batista-Brito et al. 175

Figure 2
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Cortical inhibitory circuits underlying top-down functions. (a) (Left) Schematic of the VIP-SST-PC disinhibitory circuit. VIP-INs are a major recipient

of top-down glutamatergic (orange arrow) and neuromodulatoty (green arrow) inputs. During movement (such as whisking or locomotion), VIP cells

are activated by cholinergic or top-down inputs. This causes the inhibition of SST-INs (brown trace, intracellular SST-IN recording [23], leading to

enhanced PC activity. (b) (Left) Cholinergic activation leads to desynchronization of the cortical local network. (Right) This desynchronization is

dependent on the activity of SST-INs [34], such that it does not occur if SST-INs are inactivated. (c) Specific activations of the VIP-SST-PC

disinhibitory circuit may contribute to the cortical implementation of attention. According to this model, local activation of VIP-INs, through

glutamatergic or cholinergic stimulation, is able to cut local ‘holes’ in the SST-IN mediated ‘blanket of inhibition’. (d) Illustration of the diversity of

SST-IN responses to the same context (e.g. whisking). Interestingly, SST-INs with different responses also differ in laminar position and anatomy

[16��], indicating a much richer diversity of cortical interneurons than currently understood.
Modulation of neuronal activity by sensory
predictions
Sensory predictions may modulate neuronal activity in

different ways, including direct activation of local PCs.

Here, we focus here on the ‘suppressive’ modulation of

neuronal activity according to sensory predictions as

formulated in the efficient and predictive coding frame-

works. To remove redundancies among sensory repre-

sentations within cortex and optimally use the available

communication channels for signaling novel information,

a predictive template, conveyed through lateral or top-

down feedback, may be subtracted from sensory inputs

to amplify those elements of the sensory input that are

unexpected or salient (low probability), and to efficiently

dim those elements that are redundant or expected

(Figure 3a) [40]. Sensory predictions can flow from

the natural statistics of an organism’s environment, or

from the re-afferent signals expected from an organism’s

own movements. Because in predictive coding opera-

tions, predictions are in the mathematical sense sub-

tracted from the sensory input, resulting in prediction

error signals [40], a natural hypothesis is that SST-

interneurons or PV-interneurons instantiate this ‘sub-

tractive’ operation. As explained above, SST-interneur-

ons are an excellent candidate to mediate this kind of

operation.
www.sciencedirect.com 
Three types of contextual response modulation have

been interpreted from the predictive coding framework,

namely surround inhibition, repetition suppression/mis-

match negativity and visual–motor integration. Evidence

suggests that SST-interneurons are targeted by PCs

residing in other columns through lateral connections

and play an important role in mediating surround sup-

pression of PCs [[36�]] (but see [41]). Consistent with this

scenario, SST-interneurons contribute to the emergence

of gamma-frequency (30–80 Hz) oscillations [36�] which

have been theorized to play an important function in

predictive surround signaling [42]. However, given that

V1 gamma in carnivores and primates can operate at much

higher frequencies (up to 70 Hz) it is possible that in

these species PV-interneurons rather than SST-inter-

neurons mediate predictive surround signaling [34,43],

consistent with elevated rates of FS cells with surround

modulation in cats [44]. SST-interneurons also mediate

suppression of V1 PC responses to repeated (predicted)

stimuli and mismatch negativity error signals (Figure 3b)

[45��]. Predictions of sensory events are also derived from

self-induced movements. For instance, locomotion

makes specific visual flow predictions that might be

‘subtracted’ from the sensory input, creating mismatch

signals. The error signals of ‘mismatch’ in PCs depend on

SST-interneuron activity [46��]. Altogether, these studies
Current Opinion in Neurobiology 2018, 52:172–181
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Figure 3
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Modulation of neuronal activity by sensory predictions. (a) Hierarchical

predictive coding model modified from Rao and Ballard [40]. In this

model, prediction signals (feedback) are subtracted from sensory

signals (input), and the difference is propagated (feedforward) as a

prediction error. This process may be implemented along the

feedforward and feedback cortical processing streams. (b)

Experimental set up: an awake mouse is presented with sequential

visual stimuli (gratings), while monitoring neural activity in visual

cortex. Below each grating is the simulated activity of two pyramidal

neurons with different preferred orientations. Top, four randomly-

oriented stimulus patterns, driving responses in each neuron

according to its orientation tuning. Second row, presenting the same

stimulus repeatedly causes response adaptation, particularly for the

optimally tuned neuron. Third row, a mismatch paradigm in which the

repetition is violated, causing increased responses (mismatched

negativity signal). Bottom, with SST inactivation the mismatched

negativity signal is abolished, suggesting that SST-INs are essential

mediators of this response [45��].
demonstrate strong evidence for SST-interneurons in

regulating PC firing according to input predictions.

The extent to which these functions depend on lateral

and top-down connections, and VIP activation or suppres-

sion, are currently unknown. Furthermore, top-down

connections may not only convey sensory prediction

signals, but could also convey error signals that drive

learning in the lower area, analogous to backpropagation

in artificial neuronal nets. Such learning mechanisms may
Current Opinion in Neurobiology 2018, 52:172–181 
be implemented by the non-linear properties of PC apical

dendrites, and their gating by SST-interneurons, such

that hyper-activity or hypo-activity of SST-interneurons

may lead to learningdeficits [35] (Figure 4).

Mechanisms of top-down, selective attention
Selective attention enhances certain sensory processing

streams while suppressing others in order to improve the

neural representation and propagation of goal-relevant

stimuli. Top-down (selective) attention differs from

arousal in the sense that it is not a global activation of

cortex, but can be highly selective for specific retinotopic

locations or features. Studies on selective attention in

non-human primates have revealed two key effects on

local network activity: (1) Gain modulation of sensory

responses [47], (2) A reduction in low-frequency synchro-

nization [48] and ‘noise’ correlations [49]. The local

circuit mechanisms that mediate selective attentional

modulations remain largely unknown. A major impedi-

ment to this research is the lack of a selective attention

paradigm in a genetic model system such as mouse,

limiting the ability to resolve specific neural populations

during behavior.

Given their involvement in global cortical activation,

SST-interneurons and VIP-interneurons are important

candidates to implement selective attention mecha-

nisms, or, at minimum, strongly modulate attentional

processing. In primates, attentional gain modulation of

firing rates is highly similar between fast spiking cells

(putative PV-interneurons) and PCs, suggesting that

selective attention is not mediated by a release from

perisomatic inhibition [43,50]. One view is that the

cortex is continuously flooded by a ‘blanket of inhibition’

mediated by SST-interneurons and that local activation

of VIP-interneurons is able to cut local ‘holes’ in this

‘blanket’ by selectively inhibiting SST-interneurons

[18,51] (Figure 2c). This would open the gate for excit-

atory feedback inputs arriving in L1, and ultimately

increasing the firing rates of PCs representing the

attended stimulus. Signal propagation and plasticity of

pyramidal cell’s dendritic tufts in L1 depends strongly

on the generation of NMDA-R-dependent spikes or

plateau potentials [21,52]. Consistent with the purported

role of L1 signaling, it has been shown that figure-ground

modulation and selective attentional modulations

depend on the NMDA-R [53]. Attention-associated

reductions in low-frequency synchronization and noise

correlations also strongly resemble global cortical activa-

tion due to arousal [43,54]. Following the discussion in

the arousal section above, this could be mediated by

activation of a subpopulation of SST-interneurons, espe-

cially those disinhibiting layer 4, together with the

suppression of L2/3 Martinotti SST-interneurons medi-

ated by VIP-interneurons, thereby opening the gate for

specific L1 inputs.
www.sciencedirect.com
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Figure 4
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Cortical circuits in health and disease. (a) Cortical circuit development follows a specific trajectory, which involves the integration and maturation

of GABAergic interneurons. Deviations from this developmental trajectory result in abnormal cortical circuit function. The onset of

neurodevelopmental disorders such as autism spectrum disorders (ASD) and schizophrenia are tightly linked to major landmarks for the

development of GABAergic inhibition, suggesting that altered GABAergic maturation may lead to neuropsychiatric disease. (b) Abnormal

contextual processing may be the consequence primary deficits in modulatory centers (left), higher-order frontal cortex (middle) or specific neural

elements within sensory cortex (right). In this illustration, the primary deficits (persistent increases or decreases) are indicated by lighter shading,

whereas secondary effects on cortical signaling are indicated by dashed arrows. (c) Recent studies have identified VIP-INs as critical for

translating modulatory inputs into changes in cortical dynamics and sensory processing. Shown are example data of circuit-level alterations

caused by removing schizophrenia risk gene ErbB4 selectively from VIP-INs in sensory cortex during early childhood [28��]. This mutation resulted

in (i) lack of VIP-IN activation and SST-IN suppression with movement, (ii) impaired cortical state transitions with movement, (iii), impaired network

synchrony, and (iv) reduced sensory responses.
Modulations by selective attention are, at least in part,

mediated by glutamatergic top-down feedback projec-

tions from frontal cortex [55,56]. This assertion is sup-

ported by optogenetics studies demonstrating that acti-

vation of glutamatergic top-down feedback can drive local

and rapid low-frequency desynchronization [57] and
www.sciencedirect.com 
enhance behavioral performance via activation of VIP-

interneurons [18]. Although modulations by selective

attention depend on cholinergic activation of muscarinic

receptors [58], it is difficult to envisage how cholinergic

modulation alone would implement spatially and feature

specific attention, given the lack of ACh-releasing
Current Opinion in Neurobiology 2018, 52:172–181
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neurons in the cortex of non-human primates [59], the

relatively diffuse nature of basal forebrain projections,

and the relatively slow action of the muscarinic ACh

receptor [60,61]. Instead, top-down glutamatergic feed-

back may mimick the effect that neuromodulators have

on local circuits, by modulating the activity of VIP and

SST-interneurons in highly synergistic and coordinated

ways.

Interactions between arousal state and top-
down processing
If arousal and top-down processing converge onto the same

neural elements, we should expect circuit-level interac-

tions between these processes, and a strong dependence of

‘high-level’ processes like top-down attention and predic-

tive coding on a ‘low-level’ process like arousal. We predict

moderate levelsofarousal todrivemoderateSST-mediated

desynchronization and partial VIP–SST—PC-mediated

‘ungating’ of layer 1 inputs. This may establish a permissive

set of initial conditions upon which top-down and lateral

inputs can further modulate according to immediate task

demands. Inparticular, global cholinergicactivationmay be

highly conductive in facilitating top-down modulations of

neuronal activity. Cholinergic but not noradrenergic ago-

nists boost global attention [38,62], which may reflect the

bias for cholinergic inputs to engage the VIP–SST–PC

circuit and disinhibit layer 1, whereas noradrenergic inputs

preferentially stimulate SST-interneurons [5] and suppress

L1 top-down signals.

Several pieces of evidence indicate that top-down pro-

cesses indeed depend on arousal state. Gamma-band

synchronization, which is functionally implicated in pre-

dictive coding operations [42] and selective attention

[48], depends strongly on arousal state mediated by the

cholinergic system [63]. Similarly, surround suppression

is abolished by isoflurane anesthesia, likely due to the

lack of basal cholinergic drive onto SST cells [8]. Fur-

thermore, the modulation of neuronal activity by spatial

attention is enhanced and suppressed by agonists and

antagonists of the muscarinic cholinergic receptors,

respectively [53]. This may not necessarily indicate that

top-down attention is directly mediated by cholinergic

mechanisms (as discussed in previous section), but could

alternatively be explained by the purported role of SST-

interneurons in mediating selective attention modula-

tions. Future work should further address the precise

sites of convergence of top-down and arousal pathways,

to better understand how these different processes

interact.

Contextual modulations linking GABAergic
interneuron dysfunction and neuropsychiatric
disease
All major GABAergic interneuron cell-types have been

implicated in neuropsychiatric disease [64]. However, we

have yet to identify the circuit-level alterations that
Current Opinion in Neurobiology 2018, 52:172–181 
underlie abnormal behavioral and cognitive disease phe-

notypes. The current framework proposes that GABAer-

gic interneuron dysfunction causes neuropsychiatric dis-

ease due to a disruption of excitation–inhibition (E–I)

balance [65–67]. We, and others [68], find this framework

limiting for three reasons. (1) Given the diversity of

GABAergic interneurons and related circuits as described

above, there is no singular ‘E–I balance’ in cortex. (2) For

most neuropsychiatric conditions, effective medications

target neuromodulatory systems (e.g. dopamine, seroto-

nin, norepinephrine) which have complicated effects on

levels of excitation and inhibition. (Notable exceptions

are anxiety, seizure and alcohol withdrawal, which are

managed by directly increasing the strength of GABAer-

gic inhibition [69–71]). (3) A focus on contextual modula-

tions, in contrast to E–I balance, provides direct, testable

hypotheses for linking cellular dysfunction with behavior

and neuropsychiatric disease (see below).

Deficits of contextual modulation are prominent com-

ponents of neuropsychiatric disease. Attention is highly

compromised in schizophrenia and ADHD [72,73].

Altered arousal is a hallmark of mood and anxiety dis-

orders [74–76]. Altered predictive coding, as assessed by

repetition suppression and mismatch negativity, is prom-

inent in schizophrenia and autism [77,78]. Given the

roles of GABAergic interneurons in contextual modula-

tion and their dysfunction in disease, we propose that

components of neuropsychiatric disease can be under-

stood as deficits in GABAergic interneuron-mediated

contextual modulation.

Mouse models of neuropsychiatric disease enable the

examination of cellular, circuit and behavioral properties

preceding and during the development of overt disease-

related phenotypes. Perturbations of cortical GABAergic

circuits during development have been shown to disrupt

cognitive processes (such as cognitive flexibility and

sensory perception) [28��,79], demonstrating that alter-

ation of inhibition may be a common early signature of

disease. A recent study selectively altered cortical VIP-

INs during early postnatal development and tracked the

emergence of dysfunctions in cortical dynamics and con-

textual modulation [28��]. Specifically, VIP-IN mutations

abolished locomotion-induced modulations in SST-inter-

neurons and PCs, reduced cortical responses to sensory

stimuli and impaired sensory perception [28��]. Interest-

ingly, these alterations emerged only during adolescence,

demonstrating that disease-related phenotypes can arise

from developmental dysfunction of the VIP-SST circuit

motif [28��]. Such studies will provide mechanistic

insights into the pathophysiology of neuropsychiatric

disease, and hopefully inspire new approaches to thera-

peutic intervention.

To summarize, progress in development of genetic

mouse model systems has made possible the study of
www.sciencedirect.com
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distinct classes of cortical GABAergic interneurons in

behaving animals. In this review, we focused on the

emerging roles of SST and VIP cortical interneurons in

mediating contextual modulations. These contextual

modulations are central mechanisms of healthy cortical

functioning, and likely to be critical to cortical dysfunc-

tions in neuropsychiatric disease.
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